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TITRE
Modélisation Computationnelle des États et Capacités de

l’Utilisateur afin d’Optimiser des Tâches d’Entrainement BCI
Résumé
Les Interfaces Cerveaux-Ordinateur (ICO) sont des systèmes qui permetent de

manipuler une machine avec sa seule activité cérébrale. Elles sont utilisées pour
accomplir des objectifs variés, par exemple afin qu’un amputé puisse manipuler un bras
robotique, pour une réhabilitation neuronale en cas d’accident vasculaire cérébral, dans
un cadre ludique pour jouer à des jeux vidéo, etc. Une ICO comprend l’acquisition du
signal cérébral (le plus souvent par électroencéphalographie, EEG), le décodage et
l’interpretation de ce signal, et enfin la production d’un retour sensoriel à l’utilisateur.
Ce retour guidera l’utilisateur pour réguler son activié cérébral et apprendre à manipuler
la machine. La morphologie du cerveau difère cependant entre utilisateurs, et les
pensées d’un même individu varient au cours du temps. Ces fluctuations rendent les ICO
moins performantes, qui sont alors difficiles à utiliser hors des conditions du laboratoire.
Nous avons donc besoin d’une machine dynamique, qui puisse s’adapter au cours du
temps à son utilisateur. Dans la littérature les approches proposées afin de remédier à ce
problèment décrivent des machines qui décodent de manière adaptative les signaux EEG,
mais ces systèmes ne sont pas assez robustes et ne permettent toujours pas aux ICO
d’être utilssées dans la vie quotidienne.

L’objectif de cette thèse est d’améliorer les performances et l’utilisabilité des ICO
basées sur de l’EEG, en les adaptant de façon innovante aux états et compétences des
utilisateurs. Pour ce faire, nous avons premièrement mis en évidence tous les facteurs
changeants dans une ICO en définissant trois séquences : 1. Les états psychologiques
fluctuants de l’utilisateur qui modifient la signature du signal EEG ; 2. Ce signal qui
varie et qui amène la machine à ajuster son décodage ; 3. La tâche qui est présentée
à l’utilisateur via le retour sensoriel de la machine, et qui influence à son tour les
états psychologiques de l’utilisateur. Nous avons ainsi mis en évidence la possibilité
d’adopter un nouvel angle de recherche, en utilisant la tâche adaptative pour diriger
les états psychologiques de l’utilisateur et aider ce dernier à manipuler une ICO.
Au lieu de seulement adapter le décodage aux signaux cérébraux, nous avons donc
considéré l’adaptation de l’interface (via le retour sensoriel produit par la machine) afin
d’influencer les signaux et d’en faciliter le décodage. En utilisant des connaissances
issues de la psychologie comportementale et des sciences de l’education, il est en effet
possible de créer des taches et des interfaces qui incitent les utilisateurs à réussir et
même à prendre plaisir à utiliser une ICO. Ces différents facteurs, liés à la motivation,
participent à produire des signaux plus predictibles et plus facilement decodables par la
machine, augmentant d’autant la performance du système. Nous avons donc formulé
une taxonomie des ICO adaptatives en définissant la tâche adaptative comme un nouveau
moyen d’améliorer les performances des ICO.

Une fois que la taxonomie des ICO adaptatives a été mis en place, nous avons cherché
à identifier chez l’utilisateur quel était l’état psychologique optimal qui puisse servire de
critère d’optimisation de la tâche. La litérature en psychologie indique que cet état est
l’état de flow, un état d’immersion, de controle et de plaisir optimal qui incite les
gens à se surpasser, quel que soit la tâche, le sexe, la culture ou bien encore l’âge. En
étudiant plus avant la littérature en psychologie positive et en sciences des l’éducation,
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nous avons remarqué que cet état est souvent induit en adaptant la difficulté de la
tâche aux capacités de la personne. Nous avons donc choisi d’évaluer l’impact de cet
état à l’aide d’une expérience dite d’imagerie motrice, où la machine est manipulée
par la seule imagination de mouvements comme ceux des mains. Nos résultats ont
montré que l’adaptation de la tâche augmente l’état de flow, qui se trouve lui-même
corrélé positivement avec les performances des ICO. Une fois que nous avons eu trouvé
puis évalué l’état optimal de l’utilisateur, nous avons investigué l’influence du retour
sensoriel fourni à l’utilisateur par la machine. Ces nouvelles recherches nous ont conduit
à étudier plus profondéments les profils des utilisateurs, notamment leurs traits de
personalité, afin d’adapter au mieux la tâche. Nous avons alors mené une deuxième
expérience impliquant de l’imagérie motrice. Les résultats de ces travaux suggèrent
que les performances pouraient augmenter si la difficulté de la tache est modulée en
fonction des traits de l’utilisateur.

À l’issu de ces expériences nous manquions cependant toujours d’un modèle
matémathique générique qui permette à la machine de trouver et d’appliquer ces règles
elle-même, en apprenant à partir des réactions de chaque utilisateur et en inférant leurs
intentions. Seule l’utilisation d’un tel modèle permettrait enfin le déploiement des ICO
hors des environnements contrôlés des laboratoires. Il se trouve que les dernières
avancées en neuroscience computationelle ont abouti à l’étabilssement d’une approche
nommée Inférence (Bayesienne) Active, proposée pour modéliser mathématiquement
la perception, l’apprentissage et l’action du cerveau. Inspirés par ces recherches,
nous avons intégré un modèle computationnel à une ICO, donnant alors au système
une représentation de ses propres composants. L’intelligence probabiliste qui en
résulte permet alors au système de s’adapter automatiquement à l’activité cérébrale
de l’utilisateur, de la même manière que l’activité cérébrale s’adapterait à une ICO.
Nous avons démontré la flexibilité, la généricité et l’efficacité de ce modèle grâce
à des simulations sur des données réelles. Comparé aux autres algorithmes de la
littérature, l’utilisation de l’Inférence Active a permis d’augmenter les performances du
système. Grace à ces différentes contributions nous esperons avoir fait un pas qui nous
rapprochera de l’utilisation des ICO au quotidien.

Mots clés
Interfaces Cerveaux-Ordinateur; Modèles Adaptatifs; Inférence Active; État de flow



TITLE
Computational Modeling of User States and Skills for Optimizing

BCI Training Tasks

Abstract
Brain-Computer Interfaces (BCIs) are systems that enable a person to manipulate an

external device with only brain activity, often using ElectroEncephaloGraphgy (EEG).
Although there is great medical potential (communication and mobility assistance,
as well as neuro-rehabilitation of those who lost motor functions), BCIs are rarely
used outside of laboratories. This is mostly due to users’ variability from their brain
morphologies to their changeable psychological states, making it impossible to create one
system that works with high success for all. The success of a BCI depends tremendously
on the user’s ability to focus to give mental commands, and the machine’s ability to
decode such mental commands. Most approaches consist in either designing more
intuitive and immersive interfaces to assist the users to focus, or enhancing the machine
decoding properties. The latest advances in machine decoding are enabling adaptive
machines that try to adjust to the changeable EEG during the BCI task.

This thesis is unifying the adaptive machine decoding approaches and the interface
design through the creation of adaptive and optimal BCI tasks according to user states
and traits. Its purpose is to improve the performance and usability of BCIs and enable
their use outside of laboratories. To such end, we first created a taxonomy for adaptive
BCIs to account for the various changeable factors of the system. Then, we showed that
by adapting the task difficulty we can influence a state of flow, i.e., an optimal state of
immersion, control and pleasure. which in turn correlates with BCI performance.
Furthermore, we have identified the user traits that can benefit from particular types of
task difficulties. This way we have prior knowledge that can guide the task adaptation
process, specific to each user trait.

As we wish to create a generic adaptation rule that works for all users, we use
a probabilistic Bayesian model, called Active Inference used in neuroscience to
computationally model brain behavior. When we provide such probabilistic model to the
machine, it becomes adaptive in such a way that it mimics brain behavior. That way, we
can achieve an automatic co-adaptive BCI and potentially get a step closer into using
BCIs in our daily lives.

Keywords
Brain-Computer Interfaces; Adaptive Models; Active Inference; Flow state
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Abstract

A Brain-Computer Interface (BCI) is a system that enables direct interaction between the
brain and an external device, be it (i) for establishing a new form of control (e.g. for
movement or communication); (ii) for implicit environment adaptation for safer
or more comfortable user experience (e.g. ease the task in case of a high cognitive
workload) or (iii) for enabling the regulation of brain activity for therapeutic purposes
(e.g. neurofeedback).

The main elements of a BCI are: (1) acquiring brain activity with measuring tools like
Electroencephalography (EEG) for instance, (2) decoding of brain activity with signal
processing methods and machine learning that translate the brain activity into simple
machine commands, and (3) presenting these commands through feedback to the users
as guidance for regulating their own brain activity.

For the sake of improving BCI performance, signal processing and machine learning
techniques have been studied and developped on one hand, as well as the human learning
and psychological relation with the system on the other. The latter involves applying
various educational and motivational theories as part of interface and feedback design.
When using a BCI one aquires or develops a new form of skill or brain activity regulation,
which means its mastery could be learnt and trained. For some BCI paradigms such user
training seemed essential to ensure the system usability. This meant designing a suitable,
often playful interface for assisting users in accomplishing the BCI training task and thus
increasing system performance. Such interface designs applied empirical knowledge
from cognitive and behavioral psychlogy. On the other hand, when acknowledging
the adaptive, changeable human nature, an adaptive machine (that for example
automatically re-calibrates) was proposed as another way to increase the overall
BCI performance. Typically, adaptive BCIs are those in which the machine adjusts its
decoding methods to the signal changes or variability. Such signal variability is often
partially caused by the user fluctuations in attention or mood for instance. In turn,
a machine that adapts to particular changeable user states is still lacking. It would
recquire a co-adaptive system, involving a machine that adapts in response to the user
changes in real time, and predicts user intentions in short and long term. We believe
that the community is lacking a new perspective or generic framework conceptually and
computationally speaking, to unify these two major courents (inerface design and
adaptive decoding), and achieve an automatic human-machine co-adaptation.

In this thesis, we work on EEG-based BCIs, and consider 2 well-known paradigms: (1)
Motor Imagery, i.e. imagination of motor movements of one’s own limbs to actively
control a device, and (2) P300-speller, i.e. brain reactions to stimuli that are elicited and
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detected in order to spell letters and enable communication. The purpose of this thesis
is to study the ways that increase BCI performance by optimizing the training task and
assisting the user to master the “BCI skill”. This requires studying user profiles, their
relations to the BCI content, the influence of such content on the user, and on the
other hand, investigating ways to optimally adapt such content to each user and their
reactions in real-time. To enable data-driven adaptation, we operate with computational,
probabilistic models of the user, as well as empirical, psychological user data. This way
we can provide optimal training tasks to each user states and traits.

As a first step, we propose a taxonomy for adaptive BCIs in which we explicitly
regard the BCI task as a new category separate from the standard user factors and
decoding pipeline. As the user psychological fluctuations in attention or mood are often
considered to be one major cause for signal variability and poor performance, we
propose influencing the user through an adaptive machine interface so to increase
performance and system usability. When considering the task as a new category, adaptive
BCIs cease to simply adjust the decoding methods to the signal variability but also
influence their cause (the user). Such categorization can enable us to provide adaptive
short-term tasks that vary in modality or difficulty and are optimal for a particular user
state and trait. We consider interface designs within a BCI task and apply them in an
adaptive manner that is optimal for each user.

We first investigate the kind of optimal user’s states that could potentially increase
performance. We found that such psychological state could be the so called state of flow,
i.e., optimal state of control, immersion and pleasure. With such information, we further
investigate a way to reach that state through adaptive BCI task difficulty. Our Motor
Imagery (MI) BCI experiment provides promising results, indicating that through
adaptive task difficulty we can indeed increase the state of flow which showed to be in a
positive correlation with performance. Additionally, we observed an unexpected effect
of sound and background music on MI performance. We learned that within the BCI task
interface,we should also acknowledge the influence of the “background” sensory
information it can have on the user states and thus performance. In a preliminary study,
we show the potential benefits of using congruent (task-related) sound asMI task
feedback.

Such results led us to investigate more thoroughly the relationship between human
factors, performance, and learning MI skill. We created predictive models of performance
and learning based on human factors (personality traits such as extroversion, and states
such as flow or workload). Thanks to the models, we unveil which task difficulties are
optimal for which personality type. Notably, the optimal level of difficulty would depend
on a criteria of optimization, i.e., whether we favour maximization of performance,
learning or user experience.

Furthermore, using data fromMI experiments, and results fromMI prediction
models, we simulate a simple adaptive method to prove the usefulness of adapting the
task difficulty according to each user. This model is fed with priors about the user traits,
and a criteria of optimization (here to maximize performance).

We then go further from simple adaptation rules to a generic, probabilistic
computational framework, enabling full automatization of adaptive tasks. Such
computational framework, called Active Inference, is a well known neuroscience
approach that mathematically models brain processes. When such a model (of the brain)
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is endowed to the machine, Active Inference enables co-adaptation between the brain
and the machine which mimics brain behavior. Our simulation of Active Inference
on a P300- speller BCI represents a step towards enabling a fully automatic BCI task
co-adaptation.
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Introduction

Brain Computer Interfaces (BCIs) are systems that enable a living being to interact with a
machine using only brain activity. Thanks to the technological advancements, the interest
in BCIs has grown immensely during the last decades. BCIs are mainly used to facilitate
the interaction between people with different disabilities and their environment
[Milan and Carmena, 2010], Although there have been outreach in non-clinical domains
such as gaming and art [Tan and Nijholt, 2010]. BCIs have many potential and vast
application range, however they are not yet robust to be used outside of research labs.
The community’s priority today is to assure the system robustness and its usability. It is
quite a difficult task, considering the abundant inter (e.g. brain morphology) and
intra-subject (e.g. attention drops) variability. The major obstacle lies in the large
spectrum of sources of variability during BCI usage, ranging from (i) imperfect recording
conditions, e.g. environmental noise, humidity, static electricity etc. [Maby, 2016] to (ii)
the fluctuations in the user’s psycho-physiological states, due to e.g. fatigue, motivation
or attention [Jeunet et al., 2015a].

In this thesis, we choose to focus on the user as cause of signal variability, as it has
shown to have a strong influence on BCI performance and it contains many facets yet to
be explored [Lotte et al., 2013]. By influencing user motivation, immersion and sense of
control, we wish to evoke an optimal psychological state so to implicitly increase
BCI performance overall. The human changeable (adaptive) behavior is seen as a
problem in BCIs, as it causes signal variability which is then difficult to decode, and in
turn it decreases the system performance. As a solution, many adaptive machines
were designed to recalibrate, and update the classifier, adjusting to user changes
[Faller et al., 2012, Woehrle et al., 2015]. However we can use human changeability to
our advantage, to influence their states so that they can learn more easily and with high
motivation. We can consider that the user changes in different time scales, e.g. attention
drops operate within shorter periods, while a skill requires a longer period. Knowing this
along with educational and cognitive theories, we can provide optimal tasks with
adapted difficulty and represent them in different time scales, such that the user
learns and performs to the maximum of their capacity, implicitly improving system
performance overall. In that way, we propose to perceive the task as a new category,
separately from the user and system decoding pipeline, so that we can not only adjust to
the user changeability, but also steer such changeability to maximize learning and
performance. The goal of this thesis is to explore and propose adaptive tasks that
influence users so to increase their experience, learning and BCI performance.

13
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Thesis Structure

This thesis is comprised of three parts:
Part I Brain & Machine
In Chapter 1, we introduce the concept, Application, and Principles of a BCI. We

develop in more detail the EEG-based BCI Paradigms and Decoding Techniques, from
Signal Processing, Machine Learning to Metrics used to represent user performance.
Finally, we describe the Feedback provided to the user, which guides them to learn self
regulation or gain control over their brain activity. We describe various interface
designs inspired by educational theories, and highlight their influence on user learning.
Furthermore, we unveil the chronological evolution of BCI feedback designs according to
educational and cognitive theories.

In Chapter 2, we present a taxonomy for adaptive BCIs, in which we try to account
for most of the changing (adaptive) factors coming both from the human and the
machine. We provide a novel perspective on the adaptation process. We accomplish this
by using a Task model, which adapts according to the changing user factors that are
arranged in a User model. The user model contains human factors such as various
personality traits, skills and states that have shown in the literature to influence BCI
performance. Furthermore, we highlight the fact that every BCI is used for a certain
purpose, be it for mobility, communication or other. On account on such purpose, we
propose to build a criteria of optimization, e.g. maximization of performance or user
motivation, that would guide the whole adaptation process. We validate our taxonomy
(also referred to as a generic conceptual framework) by providing a comprehensive and
extensive literature review from interface designs to adaptive decoding techniques. This
framework can serve as a graphical representation of existing (human/machine)
adaptation methods, while it can also enable a straightforward visualization of the
missing gaps to be filled with new approaches.
Part II Influencing the User with BCI task

In Chapter 3, we first investigate the optimal user state for performance, called the
flow state (optimal control, immersion and pleasure), and detail ways to attain such state.
We then present our Motor Imagery (MI) experiment in which we influence the user’s
state of flow by adapting the BCI task difficulty. Furthermore, we show that flow is
positively correlated with performance and that we indeed can influence flow with
adaptive BCI task difficulty. An auxiliary study is performed to explore the influence of
auditory sensory information on MI performance.

In Chapter 4, we investigate more thoroughly the relationship between the human
factors and performance. We investigate the importance of user personality traits and
states on learning the MI skill, i.e., evolution of performance over a session. We conduct
another MI experiment in which we influence the user through task difficulty. We
acquire data to build a predictive model that could unveil which kind of task is optimal
for what kind of user. Moreover, depending on what we set to be predicted, be it a flow
state or performance, it can serve as a guide for overall adaptation, i.e., it can serve as an
optimization criteria to wager between user experience and system accuracy for
instance.

In Chapter 5, we use priors about user traits and states acquired from the prediction
models to perform a simple adaptive method which provides optimal task difficulty to
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each user. To demonstrate the usefulness of the model for maximizing performance, we
perform a simulation using real data from the MI experiment from the previous chapter.

In Chapter 6, we propose the use of a generic, computational framework – Active
(Bayesian) Inference to automatically lead the adaptation process towards a goal
(automatically incorporating an optimizarion criterion). Active Inference is a computational
neuroscience approach, a Bayesian framework that models learning and decision making
of the brain. As such, we endow such computational model of the brain to the BCI
machine, so that the machine can then adapt in a similar fashion as the brain would. We
demonstrate an implementation of Active Inference on a simulated P300-Speller BCI
using real data from 18 subjects.
Part III Thesis Contribution and Perspectives

In Chapter 7, we share perspectives to influence the cause of signal variability (the
user states) through optimal task. Moreover, considering perceptual affordance, we
describe the importance of acknowledging the effect various task representations (2D,
3D, congruent or not, continuous or discrete task representations for instance) can have
on the user. We demonstrate how different sensory input can trigger involuntary motor
reactions for instance. We provide a short review of well established Human-Computer
Interaction training Task models, and we appeal to the community for a BCI task
design standardization. Finally, to close the loop, we present our contribution to the
BCI community through a graphical representation of the adaptive BCI taxonomy
(framework) introduced in Chapter 2. We highlight all the elements of the framework
that we adapted in this thesis along with the gaps to be filled by our future work. We list
all the potential improvements of our methods. We regard the task as a central element
that can bind together adaptive machine and human approaches, and could make their
automatic co-adaptation possible.



PART I

Brain & Machine

This part contains a short: “Everything you need to know about Brain Computer Interfaces”,
and a detailed: “Everything my research is built upon”.

The selected publication for this part is Mladenović, J., Mattout J., Lotte, F., (2017) A
Generic Framework for Adaptive EEG-Based BCI Training and Operation. Chapter 31 in BCI
Handbook: Technological and Theoretical Advances. Taylor & Francis, CRC Press.
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Chapter 1

The Brain-Computer Interface

Philosophical Thought The following chapter is about the fundamentals of brain
computer interfaces (BCIs), the relation between brain and machine. Our way of
reasoning, perceiving and measuring events and relations in the world is modeled on the
basis of premises developed during a long path of philosophy. I think that it is useful to
understand what it means to measure brain activity, and what drives this kind of
research. I wish to share some philosophical thoughts about the origin and evolution of
premises that grounded the connection between brain and machine, or human thinking
and machine “thinking”.

Since Parmenides (ancient Greek philosopher 6.BC) and his ontological statement:
“Thinking and Being is the same”, the process of thinking became a central subject in
western philosophy. Furthermore, as it was presumed that only humans can think,
ontology (i.e., question of existence) became a matter of anthropology. Sophists,
particularly Protagoras, expressed this statement as "Man is the measure of all things,
those that exist that exist, and those that do not that exist not ". Later, to escape
relativism of individual reasoning, Aristotle added that one cannot think of such things
that do not exist, showing that thoughts dwell in the realm of reality, of the existing. He
thus developed Organon or Logic to serve as a verification tool for the correctness of
reasoning. Almost a millennium later, Parmenides’ statement was interpreted by
Descartes as “Cogito ergo sum” (“I think thus I exist”) placing an individual as the
reference or measure of all, of reality. 1 It seemed as though the question of existence
and reality is placed in the hands of each and every person, to build it or project it
from their own being or by their own measure. To escape this conclusion, Descartes
introduced matter and its extension in space and duration in time as the general
characteristic of reality, hence of existence. The abstract representation of space-time
relation, his invention, is known as Decartes’ (Cartesian) product. It became a tool to
quantify any relation in realty, primarily in mechanics. Le Roy and La Mettrie, French

1So if man is the measure of reality, and man is a process of thinking, then the measure of reality lies within
the measure of the thinking process? Does research in brain activity then provide measures of reality?

17
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medical doctors in the 17th century followed Descartes teaching and concluded, if body
as matter carries thoughts: “Thought is a simple modus of body, a form of mechanical
movement”, and defined “man as machine”. The division between body and mind, the
issue that brought many debates and created many philosophical currents got similar
mechanical expression in the area of psychology. In the 20th century, behaviorists
believed that man’s mind can not be objectively studied, but his behavior can, i.e., we
can know only what we observe, that is, input-output, action and reaction.

While, according to some, the existence of man got reduced into a mechanical device
(machine), in parallel from Aristotle’s Organon or tool for thinking - logic evolved
through predicate logic to Boole’s algebra (0-1, true-false) which is the foundation of
every machine today. This means that the machine was given a logical, objective way of
human-like “thinking” while human process of thinking came to be regarded as less
objective and less reliable than that of the machine. 20th century philosophers who were
still trying to explain the mind-body or thought-brain concept, started explaining it
through the functionalities of the machine, or hardware-software, and as one entity.

Today, in BCI and Physiological Computing, the measure of human psychological
(subjective) states, feelings (that could not have been observed by behaviorists), can be
“objectively” quantified through machine. Hence, using brain imaging, and sophisticated
measuring tools (machines), Varela, Damasio and other cognitive neuroscientists,
found scientific grounding in monism (mind-body as one), i.e., there is no cognition
without the body. Hence, research of the self and reality has never ceased, but only tools
have changed, from human logic to now machine logic. However, it is still within the
boundaries of logic, and categories set by Aristotle.

1.1 Introduction

Research in brain processes has been a growing topic for the past decades. Brain
Simulation as part of the Blue Brain project [Markram, 2006], Brainbow project –
understanding the neural connectivity by coloring neurons [Livet et al., 2007], Optoge-
netics – influencing behavior by screening the brain with light, achieved through
genetic mutation with photo-sensitive (retinal) cells [Deisseroth, 2011], and finally
Brain-Computer Interfaces (BCIs) which can be seen as an evolutionary step of man
which expands brain control from one’s own body onto a machine. As this thesis
revolves around the improvement of BCIs, we will provide more details on this topic.

The term Brain-Computer Interface (BCI) was coined by a researcher Jacques
Vidal in the 1970s [Vidal, 1973]. However, in 1965, American composer Alvin Lucier,
as well as a French composer, Pierre Henry, with his Corticalart, were already using
a BCI-like system. With his system, a person was able to perform music only by
producing a certain brain wave [Straebel and Thoben, 2014]. Thanks to the neural
plasticity, i.e., the ability of the brain to rewire its neural pathways or create new ones,
“the brain can appropriate external devices as natural sensor or effector channels”
[Levine et al., 2000]. One of the first successful human neuroprosthetic implant was
made in the early 2000 [Hochberg et al., 2006], and BCIs potential has been growing
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ever since [Lotte et al., 2017]. BCIs today are often “directed at researching, mapping,
assisting, augmenting, or repairing human cognitive or sensory-motor functions”
[Krucoff et al., 2016].

In this chapter we start with section 1.2 in which we describe the various applications
of BCIs today; followed by section 1.3, in which we present the essential functions and
elements of a BCI. Continuing with section 1.4 in which we provide the underlying
neurophysiological phenomena and measuring techniques that enable such brain-
machine relation. After introducing electroencephalography (EEG) as ourmainmeasuring
tool, in section 1.5, we develop EEG-based BCI paradigms, and in section 1.6 we further
develop decoding techniques used to interpret EEG-based brain activity. Furthermore,
in section 1.7,we highlight human learning and training as an important part of a
successful BCI task.

1.2 Application

BCIs are systems that enable a direct interaction between the brain and an external
device. They have various applications, be it (1) for establishing a new form of control
(e.g. for movement or communication); (2) for implicit environment adaptation for safer
or more comfortable user experience (e.g. ease the task in case of a high cognitive
workload); and (3) for enabling the regulation of brain activity for therapeutic purposes
(e.g. neurofeedback). We briefly develop each type of application, as follows.

(1) A new form of control is mostly used in medical purposes for patients with severe
motor impairments, e.g. to manipulate wheelchairs or prosthetic limbs by imagining limb
movements [Milan and Carmena, 2010], to communicate by reacting to various visual
or audio stimuli such as flashing letters on a screen [Farwell and Donchin, 1988], or for
neuro-rehabilitation or neural rewiring by mentally training motor movements of the
impaired limb [Ang and Guan, 2013, Soekadar et al., 2015] and as such, re-routing the
damaged neuronal connections thanks to brain plasticity. Even though the main forms of
control are medical, there are also artistic ones in music performances [Miranda, 2014]
and plastic art for experimental artists or again, patients [Münßinger et al., 2010].

(2) An implicit adaptation (often not in a form of conscious control as in (1)) called pas-
sive BCI, or recently renamed into neuro-adaptive technologies [Zander and Kothe, 2011]
represents an adaptation of a non-BCI task in order to increase comfort or safety
(in driving or piloting, [Gateau et al., 2018]) or immersion in gaming for instance
[van de Laar et al., 2013a]. This is possible because some cognitive states such as work-
load for instance can be inferred by monitoring brain activity during a task, thus such
task can be adapted in real time to the mental workload of the person engaged in it.

(3) A therapeutic technique for restoring cognitive function, or brain activity
regulation, called neurofeedback. It is being explored for stroke rehabilitation or to
serve as replacement for medications such as Ritalyn which has many side effects for
patients with attentional deficits [Sitaram et al., 2017]. If there is a known form of brain
activity that is “healthy”, then there is a reference point that can be provided (e.g.
visually) to a person, so that one can observe it and notice how far they deviate from
that “healthy” reference. Even though the idea behind is to consciously regulate the
brain activity so to reach such desired level (e.g. of attention) without the need of
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medications, the evidence of the efficacy of neurofeedback still remains controversial
[Batail et al., 2019, Ghaziri and Thibault, 2019].

Although there is a vast spectrum of applications, a BCI is still mostly tested in con-
trolled conditions, suchas in laboratories,because it is prone to error [Wolpaw and Wolpaw, 2012].
One exception is for artistic performances that do not necessarily need exact control. A
BCI does not have an easily predictable behavior due to numerous causes that vary from
moment to moment, between users, and environment that is difficult to anticipate and
influence. In the following section, we describe the principles that make a BCI system,
and we mention ways of improving a BCI.

1.3 Principles

A BCI includes a living user and a machine, and as such it incorporates many composite
elements such as: (i) the user that produces brain activity that depends on complex
psycho-physiological phenomena, (ii) measuring tools that capture user’s brain activities,
(iii) the machine that decodes such activities and produces some output perceivable
to the user, and (iv) various relations between not only the user and machine, that
are, the machine interface influencing the user psychological states, and the user
states influencing the machine decoding, but also the environment factors that can
influence both the machine and user, see figure 1.1. The environment can influence the
machine directly because it contains for instance electromagnetic waves that can create
interference with the (electromagnetic) measuring tools. As for the environmental or
social influences on the user, it is shown that the gender of the experimenter can
influence the user, for instance [Roc et al., 2019].

Figure 1.1: Depiction of the user, themachine and their inter-influences, alongwith the external (environmental)
influences.

All of these elements have room to be improved and explored. The BCI community
was mostly focused on improving the measuring tools and decoding techniques, but
only recently the user’s physical and psychological states have shown to be of major
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importance to the success of a BCI use. Once the user got acknowledged, various
environmental and machine elements that influence the user’s psychological states were
brought into consideration. Notably the content that the user interacts with, presented
as a machine output within a graphical or tangible interface for instance.

In principle, a BCI relies on one hand on the user’s capacity to create stable and
distinct brain activity and on the other hand on the machine’s ability to measure and
decode such activity. A major obstacle lies in the large spectrum of sources of variability
during BCI use, ranging from (i) imperfect recording conditions: environmental noise,
humidity, static electricity etc. [Maby, 2016] to (ii) the fluctuations in the user’s psycho-
physiological states, due to: fatigue, motivation or attention etc. [Jeunet et al., 2015a];
experimenters presence during BCI use [Roc et al., 2019]. For these reasons, only
a few BCIs have managed to be reliable enough to be used outside the laboratory
[Wolpaw et al., 2018]. Particularly, it is still almost impossible to create one BCI design
effective for every user, due to large inter subject variability, such as the differences in
brain morphologies [Allison and Neuper, 2010]. That is why, most BCI machines need a
calibration period before their use, so that the machine can learn to decode the brain
activity particular to every person. The main concerns are to create a more robust
system with the same high level of success for everyone, at all times, and to improve the
current usability of the system [Wolpaw and Wolpaw, 2012, Lotte et al., 2013].

In the following sections we briefly describe each of the above mentioned BCI
elements (measuring, decoding brain activity and feedback on one’s brain activity); and
we also mention some of their potential improvements.

1.4 Measuring Brain Activity

In this section we describe the underlying processes of the brain, be it in form of electric
currents, magnetic fields, light refractions. Moreover, we briefly present the tools that
enable their measurements today.

1.4.1 Neurophysiological Phenomena

The human brain is composed of about 80 billion glial cells and 100 billion neuronal cells
[von Bartheld et al., 2016]. The former provide energy and protection to the neurons
which in turn control all physiological activity in the body through the nervous
systems spread throughout the whole organism. When a living organism engages in
an activity, be it cognitive or physical, many neurons communicate between each
other in a form of electrical currents. Sources of electrical impulses, those that we can
measure, are mostly pyramidal neurons because of their size and group orientation
[Nunez, 1974]. Depending on their orientation, the electrical signal (i.e., voltage in
time) can be measured on the scalp (noninvasively) with more or less precision.
ElectroEncephaloGraphy (EEG) uses electrodes that capture this electrical property of
neurons, whereas MagnetoEncephaloGraphy (MEG) uses very sensitive magnetometers
to measure the magnetic field arising from the electrical currents. Such electric current
coming from aligned pyramidal cells (perpendicular to the cortical surface) needs to pass
through many layers of tissue and bone before reaching the electrodes – sensor space.
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Thus, the sensors record the linear mixture of the source activity – firing neurons, which
is spread spontaneously within the head (volume conductor). Volume conduction can be
defined as the transmission of electric or magnetic fields from an electric current source
through biological tissue towards the sensors Furthermore, when one brain region is
active, there is an increase of blood flow and oxygen. Thanks to this phenomenon, we can
scan brain activation using various magnetic coils, using magnetic resonance imaging
(MRI) that aligns nuclei, or by sending near-infrared (NIR) light. The latter is possible
thanks to the fact that human tissue can be transparent, penetrable or absorbent to NIR
light, depending on the density of hemoglobin in blood (i.e. transporter of oxygen).

The most developed brain regions are the sensory-motor cortex, producing strong
signals coming in most cases from the motor neurons, or sensory neurons (visual,
tactile or auditory) that react to various external stimuli. If human form would be
linearly dependent to the brain region size, a human would look like the homunculus
[Schott, 1993], see figure 1.2.

Figure 1.2: Homunculus, a representation of a linear mapping of the sensory-motor cortex to the human
morphology.

1.4.2 Measuring Tools

Tools that measure brain activity can be divided into two main categories: invasive
and non-invasive ones, see figure 1.3. The most used non-invasive tools are: (1)
ElectroEncephaloGraphy (EEG), a portable measuring tool consisting of a number of
electrodes that record electrical current on the scalp; (2) MagnetoEncephaloGraphy
(MEG), a non-portable, functional neuroimaging tool consisting of a number of very
sensitive magnetometers that record the magnetic field around the scalp; (3) functional
Magnetic Resonance Imaging (fMRI), a non-portable, scanning tool consisted of magnetic
coils creating a magnetic field that differently alligns blood nuclei depending on its
levels of oxygen; (4) functional Near-Infra-Read Spectroscopy (fNIRS), a portable,
neuroimaging tool that is consisted of optodes that emit and receive optical waves which
then reveal the density of blood flow and oxygenation. The most used invasive tools are:
(a) ElectroCorticoGraphy or ECoG, similar to EEG, it captures electrical activity of
millions of neurons, but with higher precision as it is directly placed on the cortex, and
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(b) Subcortical Arrays are similar to ECoG but as the name suggests, these electrodes are
placed inside the cortex and they can capture the activity of one or a few specific
neurons.

Figure 1.3: Tools measuring brain activity, from invasive (subCortical Arrays, ECoG) to non-invasive (EEG, fNIRS,
MEG and fMRI).

Short History EEG – First registered human testing was done by Hans Berger, a
German physiologist, in 1924, coining the term EEG [Berger and Gloor, 1969]. His work
was inspired by discoveries of electrical current in animal brains [Caton, 1875]. On a
personal level, he believed that humans could communicate telepathically at distance
because when surviving a deadly accident, his sister “heard” him and urged their father
to send a telegraph [Berger, 1940]. Today, there are many EEG devices, that vary from (i)
the number of electrodes for commercial (e.g. Muse of 8 electrodes) or medical, scientific
use (e.g. Brain Products from 32 to 162 electrodes), (ii) electrodes that use conductive gel
or dry electrodes, (iii) electrodes that contain impedance regulation – active electrodes,
or without – passive electrodes.
MEG – First such magnetic fields were captured by physicist from Illinois University,
David Cohen, in 1968, using copper induction coil. Later on, James E. Zimmerman, a Ford
Motors researcher, developed more sensitive SQUID detectors at MIT, which Cohen
integrated in the MEG, and also built a highly magnetically shielded room to decrease
noise [Zimmerman et al., 1970].
fMRI – The fact that neural activity is closely related to changes in blood flow and
oxygenation in the brain, was experimentally discovered by Charles Roy and Charles
Sherrington, at Cambridge University, in 1890. In 1936, Linus Pauling and Charles Coryell
discovered that oxygen-rich blood with hemoglobine (Hb) was weakly repelled by
magnetic fields, while oxygen-depleted blood (dHb) was attracted to a magnetic field. So
far, an MRI machine could capture only static brain structure, so Seiji Ogawa would
enhance it in 1990 by using the BOLD (Blood Oxygen Level Dependent) contrast that
results from changing regional blood concentrations of oxy- and deoxy-hemoglobin as
mentioned above [Huettel et al., 2004].
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fNIRS – In 1977, Frans Jobsis at Duke University, showed how brain tissue and skull
transparency with Near-InfraRed spectroscopy can enable a real-time, non-invasive
detection of oxigenated hemoglobin, based on the same technique, BOLD used for fMRI
[Jobsis, 1977].

Tools Characteristics EEG is accessible, portable with high temporal resolution (i.e.
captures very fast frequency changes), however its spatial resolution is quite low, i.e. lack
of precision in determining the source of brain activity (firing neurons). MEG is an
expensive and cumbersome machine, needing careful maintenance, a special installation
and a highly isolated chamber. However, it has fairly good both temporal and spatial
resolution. fMRI is a cumbersome and expensive machine having a low temporal
resolution (captures changes within seconds), but a high spatial one. fNIRS is portable,
accessible, but it is fairly sensitive to external light and cannot be used to measure
cortical activity more than 4 cm deep due to limitations in light emitter power, having a
fairly good temporal but lower spatial resolution. The most commonly used tool is EEG,
for its high temporal resolution and accessible prices.

1.5 Paradigms of EEG-based BCIs

There are two main paradigms in EEG-based BCIs, depending on the type of neural
activity being measured, as follows. The first paradigm is (1) spontaneous BCIs,
typically measure oscillatory EEG activity, and the event related desynchronisation /
synchronization (i.e., decrease / increase of power at a certain frequency band) in
for instance Sensorimotor Rhythms (SMR) [Pfurtscheller et al., 2006] or Slow Cortical
Potentials [Birbaumer et al., 2000]. Spontaneous BCIs can be instructed, i.e., guided by
machine instructions, called synchronous BCIs, or a person can initiate a self-paced
cerebral activity, called asynchronous BCI. Spontaneous BCIs are mainly related
to Motor Imagery (MI) BCI, for instance imagining left or right hand movements
[Pfurtscheller et al., 2006], and to Mental Imagery, such as mental object rotation or
calculations [Faradji et al., 2009]. The second paradigm is (2) evoked potentials or
ERPs (Event-related Potentials) BCIs which are based on the attentional selection of
an external stimulus among several others. Be it in the visual (V), the auditory (A)
or the somatosensory (S) modality, this approach can give rise to various types of
well-known responses such as the P300 component [Farwell and Donchin, 1988] or
Steady State Sensory (Visual, Audio, Somatosensory) Evoked Potentials, (SS(V/A/S)EP)
[Middendorf et al., 2000]. The most used ERP is the P300 which is a positive deflection
of the EEG signal occurring about 300ms after the user perceived a rare and relevant
stimulus [Fazel-Rezai et al., 2012]. Note that we mostly focus on spontaneous and
synchronized MI and P300 ERP BCI paradigms as they are most common and fair
representatives of main BCI systems. In the following section, we describe how the brain
activity is being decoded depending on the chosen paradigm.
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1.6 Decoding EEG-based Brain Activity

The machine decoding is comprised out of signal processing and machine learning
approaches. Signal processing englobes temporal and spatial filtering, extraction
and selection of features of interest, while machine learning contains the labeling or
classification process of the selected features.

As each and every brain is different (e.g. morphology or neural alignment) and
produces different brain signals, typically there is need for machine calibration or
training before a BCI can be successfully used. During the calibration phase, one could
say that the machine is collecting EEG training data from the user and learning from it,
while the user is not seeing any effect of her mental commands on the machine. Later on,
during the testing phase, the machine classifies new unknown data based on its training,
permitting the user to control the machine and receive a feedback, see figure 1.4

Figure 1.4: Representation of signal processing and machine learning steps during training and testing phases.

1.6.1 Signal Processing

Electrodes capture a linear mixture of neural activity that propagates throughout the
head tissue. Temporal filtering enables noise reduction and selection of the most
discriminant frequency. Once the frequency is selected, it is provided to the spatial
filter, that performs a selection of most significant electrodes and reduces sensor
dimensionality. Signal epoching represents slicing the signal in time windows in which
the signal is typically averaged, and from which features are extracted. They are
extracted by computing the frequency band power (MI BCI) or the amplitude mean of
sub-epochs (P300) for example. All these actions take part in Signal Processing which
results in a feature vector at each time point of the signal. In other words, these feature
vectors are a condensed representation of the raw EEG signal [Lotte, 2014].
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1.6.1.1 Temporal Filtering

In the following, we list some neurophysiological priors we know about brain rhythms,
and the reasoning behind their appearances [Campisi et al., 2012].

• alpha wave (8-12Hz) appears when a person is relaxed, typically with eyes closed
but awake, and can be detected near the occipito-parietal lobe.

• beta wave (16-30Hz) appears when a person is physically engaged or imagining it
to be.

• gamma wave (above 25Hz) found mostly during conscious perception and high
cognitive involvement.

• delta wave (0.5-4Hz) is characteristic for deep sleep.

• theta wave (4–7 Hz) is characteristic for a meditative or drowsy state.

• mu wave (8-12Hz) same frequency as alpha however it appears near sensory-motor
cortex, during physical activities.

• ERD/ERS stand for Event Related Desynchronisation and Synchronisation and
appear in such order when one performs or imagines a movement. More precisely,
ERD involves a power decrease in mu wave, while ERS includes an increase in the
beta wave.

In order to extract frequencies of interest, we can simply apply a band pass filter.
As an example, imagination of a hand movement leads to a decrease in power in
the mu and beta bands during movement imagination, and to a power increase in
the beta band, right after the motor imagination ended, called the beta rebound
[Pfurtscheller and Da Silva, 1999]. So, typically for oscillatory activity of sensory-motor
rhythms (SMR) one can use a band pass filter between 8-30Hz, which includes mu and
beta. Typically then, the frequency of interest is squared, and then these values are
averaged within a 1s window or epoch. This process differs for event-related responses,
or P300 as the ERPs do not change in power but simply contain amplitude changes in
time starting from the stimulus onset. The ERP feature vector is a concatenation of
amplitudes of different sub-epochs of all the channels of interest. Both feature vectors
can benefit from spatial filters, described in the following.

1.6.1.2 Spatial Filtering

Spatial filtering is a method that virtually reduces the number of channels (electrodes) by
first weighting them, then summing them as a linear combination which creates a smaller
set of "virtual electrodes". It can be fixed (e.g. Bipolar and Laplacian) or data-driven
(e.g. supervised Common Spatial Pattern and its variants, or unsupervised Principal
Component Analysis and Independent Component Analysis) [McFarland et al., 1997,
Blankertz et al., 2007]. It is also important to note that spatial filtering not only reduces
the dimensionality of the signal, but also gathers and recovers the relevant signal that
are distributed over several electrodes. It is thus a way to address the EEG volume
conduction effect. [Lotte, 2014]
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In this thesis we use CSP for oscillatory sensory-motor rhythms used in motor
imagery BCI, so we will briefly provide a few more explanations. As it is data-driven and
supervised, it means it is configured to each person and in a supervised manner, i.e.,
classes are defined in advance. CSP is a discriminative spatial filter, i.e., it maximizes the
difference between two classes using spatial covariance matrices. Meaning, if the power
of a band-pass filtered signal (i.e., variance of such band-pass filtered signal) is very
different in an electrode between two classes it will have a large weight, and if the
difference is small between two classes it will have a small or negligible weight.

There are many variants of CSP that for instance combine spectral and spatial signal
processing, such as the Filter Bank CSP, for more information see [Ang et al., 2008].

For ERPs, a CSP does not work as it does not take into account temporal information
needed for classifying ERPs, so there is another commonly used spatial filter called
X-Dawn that considers the EEG time course. X-Dawn chooses the weights that maximize
the ERP response by powering the time course, while minimizing the entire signal
variance being ERP + noise [Rivet et al., 2009]. For more information on spatial filters,
see [Lotte, 2014].

1.6.1.3 Extracted Features

As mentioned above, feature vectors that are most commonly used are power band
features for spontaneous or time-point features for ERP BCI. There are many other
types of features such as as connectivity features [Astolfi et al., 2007], correlation or
synchronization between signals from different sensors and/or frequency bands;
signal complexity measures or higher order statistics as features of EEG signals and so
on [Lotte et al., 2018]. Other than using vectors of features, recent research has also
explored how to represent EEG signals by covariance matrices or by tensors (i.e. arrays
and multi-way arrays, with two or more dimensions), and how to classify these matrices
or tensors directly. Some research has shown that combining time points and band
powers, or band powers with connectivity features gives higher classification accuracy
as compared to single feature type [Lotte et al., 2018]. Once the features are extracted,
they can still contain high dimensional data which can be redundant. There are many
feature selection methods that investigate the relationship between the feature and the
target class from correlations, mutual information, evolutionary algorithms and other
meta-heuristics [Lotte et al., 2018].

1.6.2 Machine Learning

Most BCIs follow the same rationale, they typically consist of (i) a calibration phase, in
which the classifier learns to discriminate and translate signal features of each person
into machine commands, sometimes (ii) a training phase, in which the user learns to
manipulate the system and to regulate his/her EEG patterns, and (iii) the application, in
which the user has hopefully full control over the system and uses a BCI in real-life
conditions. Often, the user training phase (ii) takes part of the application or testing
phase (iii). The system calibration is often mandatory and lasts about 10 minutes for ERP
based BCIs [Fazel-Rezai et al., 2012] or rather 20mins for MI BCIs [Lotte, 2015].
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The calibration phase is often long and the risk inducing fatigue before starting
the BCI application. Therefore, there are many attempts to remove this phase with
unsupervisedmachine learning (i.e., in which the classes are not predefined), Riemannian
classifiers (i.e., that use Riemannian geometry to calculate distances between covariance
matrices) [Lotte, 2015] and transfer learning (i.e., that transfer the data from other
subjects) [Gayraud et al., 2017].

In [Lotte et al., 2018], recent classification algorithms for EEG-based BCIs are divided
into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer
learning and deep learning. Authors state that (1) adaptive classifiers are generally
superior to static ones, even with unsupervised adaptation, (2) Riemannian geometry-
based methods reached state-of-the-art performances on multiple BCI problems, along
with tensor-based methods, (3) transfer learning can prove useful although the benefits
are unpredictable, and (4) deep learning methods have not yet shown convincing
improvement over state-of-the-art BCI methods.

Nevertheless, the most commonly used classification algorithms real-time still
are the simple Linear Discriminant Analysis (LDA, [Mika et al., 1999]) and Support
Vector Machine (SVM, [Suykens and Vandewalle, 1999]) because of their simplicity and
robustness to small training data set.

1.6.2.1 Performance Evaluation

There are many evaluation metrics that determine how well the classifier performs the
labeling of features. The most known are the classification accuracy (CA). To calculate it
we can simply count the number of correctly classed trials and divide it by the total
number of trials. However, we can also use a confusion matrix (i.e., true positive and
negative, and false positive and negative) to calculate the rate of successfully classified
features [Thomas et al., 2013a]. For instance, in a two class problem of left-right hand
MI, at each trial there is one class that is true and the other false. Lets take for example
that if left hand class is the positive class, then the true positive (TP) will be equal to the
number of times the classifier labeled left correctly, and true negative (TN) when it
labeled the right class correctly. On the other hand, false positives or negatives (FP and
FN) is the case when it labeled the classes incorrectly. Then the classification accuracy is
a ratio equal to (TP+TN) / (TP+TN+FP+FN). You can remark that this metric does not
produce correct classification if the number of trials per classes are unbalanced. In
self-paced BCIs, the user can choose one class more frequently than the other. In such
case, the CA would be biased and assign stronger weight to that more frequent class.
Hence, CA works only in BCIs that are balanced which is often the case in synchronous
BCIs, as we can directly control the number of classes the user would choose. It also
works only on unbiased classes, i.e., if the maximal value for one class is equidistant for
the other, e.g. from point 0 the distance to -1 and 1 is equal, requiring equal mental
effort for each class. Various solutions are proposed for unbalanced datasets, such as
the Cohen’s Kappa [Schlogl et al., 2007]. To determine which class is biased, one can
investigate the confusion matrix with specificity = TN/(TN + FP), that is, the capacity to
correctly detect correct trials, and sensitivity = TP/(TP + FN), the capacity to correctly
detect errors. Furthermore, receiver operating characteristic (ROC) is a probability curve
of Sensitivity and (1-Specificity) over different classification thresholds, see figure 1.5.
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The area under the curve (AUC or AUROC) can serve as a separability index of features
[Thomas et al., 2013a]. AUROC is the most common metric used in ERP BCIs.

Figure 1.5: Example of ROC and AUC or AUROC

If we wish to determine the classification performance offline, we often use
cross-validation [Hjorth, 2017]. Cross-validation separates a set into k-folds, and uses k-1
folds as training set while 1 fold as testing data. Each fold produces a classification
accuracy or a performance value. It then performs many permutations, using what was
previously a training fold as part of the testing fold. In turn a fold from testing will
serve as a new training fold, and so on. The final performance value is a mean of all
performances calculated from all folds.

On the other hand, classification can be perceived as a communication or information
channel. In that case, Information Transfer Rate (ITR), bit rate or number of bits
transfered per second, can be used for both balanced and unbalanced classes. There is
also a variety of ITR, for detailed information see [Thomas et al., 2013a],

Lastly, as Riemannian geometry showed high success in classification, new form of
metrics have risen, such as the stability of the signal and distinctiveness of classes
[Lotte and Jeunet, 2018]. The idea of having distinct or separable classes, was mentioned
earlier as the “separability index” in [Perdikis et al., 2016]. However, instead of the
Riemannian distance, it used a Kullback–Leibler (KL) divergence between the two
multivariate normal class distributions corresponding to the two MI tasks.

1.7 Feedback on EEG-based Brain Activity

With the first BCI system, the importance of feedback for human training was clear
[Wolpaw et al., 2002b]. Normally one cannot observe one’s own brain activity, nor can
one be fully conscious of it. Therefore, the necessity of observing neural activity is
crucial for learning and brain regulation [Wolpaw and Wolpaw, 2012]. Such physical
manifestation of one’s brain activity is comprised within the feedback of the machine
output or interface. In other words, the feedback is the classification output that is
mapped in real-time onto a perceivable (visual, auditory, tactile) representation. Today,
for MI-BCIs, user training is a necessary and often cumbersome process, during which
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novel functional circuits for action are created, referred to as the "neuroprosthetic skill"
[Orsborn et al., 2014]. As for ERP-based BCIs, a general opinion is that there is very little
need for user training with [Fazel-Rezai et al., 2012], even though the user can improve
his/her P300 marker with training [Baykara et al., 2016].

In this section we will describe the importance of creating a correct feedback for
human training. We will also point out the educational theories that can be shown useful
for such learning.

1.7.1 Human Factors and Training

The feedback can be erroneous due to classification errors and bad calibration. If
the error is too high, the user can be misguided and confused by perceiving “wrong”
feedback, leading to even higher error rates [Margaux et al., 2012, Mattout et al., 2015].
What the person perceives is a mismatch between the expected output and the perceived
one, losing self-confidence and sense of agency or control. For this reason many design
strategies were developed in order to prevent such decreasing performance rates. For
instance, it was shown that with positively biased feedback, naive users generally
perform better [Barbero and Grosse-Wentrup, 2010]. However, depending on many
human psychological states and traits, such design strategies do not apply for everyone.
Indeed, it was shown that novel users who are independent and confident and motivated
are more likely to reach high performance rates than those who are anxious and tense
[Jeunet et al., 2015a]. This brings us to some general principles of educational theory
and cognitive psychology. In the following, we describe attempts of the BCI community
to create meaningful feedback and interface designs that comply with the said theories.

1.7.1.1 Educational Theories lead to Flow theory

Since the beginning of the 20th century, behavioral reactions to a variety of stimuli were
recorded influencing the development of learning strategies and conditioning. Most
known were Pavlov’s conditioning [Spence et al., 1956], Law of effect [Thorndike, 1905]
and Operant Conditioning and Reinforcement Learning [Skinner, 1938]. Behaviorists
perceived a living being as a black box, being only interested in what they can control
and observe. For instance, Skinner realized that when rewarding a mouse with food after
performing a desired action, the mouse would most likely repeat the same action
expecting to get more food. In other words, such activity is positively reinforced, and
food increased the mouse’s extrinsic motivation.

– In MI BCI, Wolpaw’s moving ball on the screen, and Pfurtcheller’s Graz protocol
was designed with respect to Skinner’s Operant Conditioning [Curran and Stokes, 2003].
Even though feedback such as Graz became a standard in MI BCI, it showed to be
suboptimal for training and performance [Jeunet, 2015]

Later on, Cognitive Developmental theories such as the Zone of Proximal Development
(ZPD, [Vygotsky, 1978], but written in 1930s), includes a tutor who strives to induce
intrinsic motivation by providing learning content adapted to the student’s cognitive
capacities. The ZPD is the zone in which the student is guided and encouraged by the
tutor.
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– In parallel, in BCI, we can find the works of [McFarland et al., 2010], who proposes
MI tasks that gradually increase in difficulty in order to assist the user training.
Additionally, [Pillette et al., 2017] propose a social agent for providing emotional
encouragement for novice MI users.

More recent theories are Motivational ones, that combine intrinsic motivation (i.e.,
learning is self-rewarding) and extrinsic motivation (e.g. good grades or monetary
rewards). Such educational or instructional design theories are the ARCS model
[Keller, 1987] stating that the content should be relevant and bring attention, confi-
dence and satisfaction in the student, while the Taxonomy of Intrinsic Motivation
[Malone and Lepper, 1987] states that the best way of learning is through play.

– In parallel, in BCI, numerous playful interfaces (machine output) were de-
signed in order to increase intrinsic motivation of users and thus increase per-
formance. For instance, [Van Erp et al., 2012] explore the social and collaborative
aspect of learning, [Ron-angevin, 2009] investigate game-like and playful 3D games,
[Alimardani et al., 2014] provides immersive content through VR environments, high-
lighting the importance of body-ownership illusion for reaching sense of agency
and high performance rates, while [Kleih et al., 2010] provides monetary rewards to
increase extrinsic motivation and performance.

Finally, what we can conclude from the literature is that we aim at inducing desired
user states such as sense of agency, attention, immersion and pleasure (experiencing
a self-rewarding sensation) in order to reach high performance rates in BCIs. One
such holistic state includes all these “sub-states”, and it is called the state of flow
[Csíkszentmihályi, 1975]. I will provide a few citations from the book “Flow: The
Psychology of Happiness” [Csikszentmihalyi, 2013]:

• “...It is when we act freely, for the sake of the action itself rather than for ulterior
motives, that we learn to become more than what we were.”

– Such intrinsic motivation can be induced by using game-like training.

• “...the self expands through acts of self forgetfulness.”

– This phenomenon could be reached by assuring immersive content, no
matter the modality (be it a book or a 3D video game).

• “Enjoyment appears at the boundary between boredom and anxiety, when the
challenges are just balanced with the person’s capacity to act.”

– This state can be induced by matching the task difficulty with the user’s
skills in real-time.

• “It is not the skills we actually have that determine how we feel but the ones we
think we have.”

– We must assure that the users believe they are in control of the machine, by
positively biasing the feedback and or by providing the body-ownership
illusion through a VR environment.
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Flow has not been studied in BCI, even though such state seems to be important for a BCI
user training and task design. Hence, in Chapter 3, we study the potential benefits of
flow state for performance.

1.8 Conclusion

In this chapter we provide an overview in which we describe key elements and principles
of BCIs, their application, underlying neuro-physiological phenomena, measuring
tools, signal processing and machine learning techniques and so on. Most of all, we
focus on the feedback as an important and somewhat novel approach to improve BCI
performances through user training. In this thesis we work on MI and P300 BCIs, hence
in this chapter we focused mostly on methods and designs that apply to these two
well-known paradigms.

BCIs have a lot of room for improvement, from measuring tools, signal processing,
machine learning to feedback content and representation of the machine interface. One
promising way to improve BCIs is to consider using adaptive systems which is what we
detail in the next chapter.



Chapter 2

Adaptive BCI

Philosophical Thought In the following chapter we describe adaptation or change,
we create categorizations and models that should capture such change. We also unveil
the necessity to dig deeper into the human psychological nature in order to create valid
adaptive models. I find it fit to briefly mention what was said about change, about
categories, concepts and their meaning.

One of my favourite quotes, “Panta rei” or “All flows”, from Heraclitus (ancient Greek
philosopher) states that the only constant is the rhythm of change, measurable duration
of its cycles. Interestingly, we “recently” discovered that the brain is in constant
movement [Enzmann and Pelc, 1992]. Therefore if our brain is constantly evolving, and
our reality is a mental construct, would that prove Heraklitus’ statement, that our reality
is then in a constant rhythm of change? Moreover, we have already detailed that the
brain of each person is different in Chapter 1. So each brain can have different rhythm of
change and thus states of reality. Is this evidence that every reality is specific to each
person?

Aristotle was the first to talk about categories, trying to explain the connection
between reality and our concepts, intermediated by language. As we can think only
about the existing objects, the main problem was the nature of a linguistic expression
of the thought, i.e., of the concept it presents. In his Organon, or Logic as we call it,
he introduced notions of concepts and their meaning, which we are familiar to as
connotation and denotation, or a bit simplified, as form and content of the notion.
Notions are in a hierarchical order. Those that display the highest degree of generality
are on the top of the hierarchy and are called categories. Namely, their (denotation)
form is the richest, they include the largest number of other notions. But, regarding
their (connotation) content, they are the poorest, the least informative about the
specific features of the objects they refer to.

We could say that the BCI community was for long only interested in the form
of the BCI system, i.e., decoding the observable EEG signal. In a sense, concording
with the behaviorists’ point of view, that man is a black box, only accounting for the
observable. However, as the brain is in constant movement and is different for each

33
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person, its activity cannot be easily observed or anticipated by a non-adaptive machine
based on form. For that, we need to dive into the content of the human, such as one’s
psychological factors, states, and experiences. That way the BCI machine could attempt
to anticipate or influence human change.

2.1 Introduction

There are two main approaches engaged in improving BCI systems: (i) improving
the machine learning techniques [Makeig et al., 2012], and (ii) improving human
learning, by using the knowledge from instructional design and positive psychology
[Lotte et al., 2013]. Both agree that the system needs to be adapted to the user but rely
on different sources of adaptation: the machine for the former and the brain for the
latter. In particular, machine learning algorithms should adapt to non-stationary brain
signals, while human learning approaches assist in the production of coherent and
stable EEG patterns of the user, or in the adaptability of the brain to the machine. This
implies that these approaches should guide the machine adaptation according to the
various users’ skills and profiles.

To our knowledge, there is no work devoted to classifying the literature on adaptive
BCI in a comprehensive and structured way. Hence, we propose a conceptual framework
which encompasses most important approaches to fit them in such a way that a reader
can clearly visualize which elements can be adapted and for what reason. In the
interest of having a clear review of the existing adaptive BCIs, this framework considers
adaptation approaches for both the user and the machine, i.e., referring to instructional
design observations as well as the usual machine learning techniques. It provides not
only a coherent review of the extensive literature but also enables the reader to perceive
gaps and flaws in current BCI systems, which would, hopefully, bring novel solutions for
an overall improvement. EEG-based BCIs are in the center of our attention throughout
this chapter. Nevertheless, the proposed solutions for adaptation can be applied to other
techniques such as invasive recordings, functional Near-Infrared Spectroscopy (fNIRS) or
Magnetoencephalography (MEG).

This chapter is organised as follows. Section 2.2 contains a reasoning behind creating
adaptive BCIs, it will guide the reader through the aspects of human and machine
learning that call for adaptive methods. Section 2.3 presents our contribution to the
field, a comprehensive framework to design and study adaptive BCI systems. We show
that the framework encompasses most techniques of adaptive BCIs, which we briefly
review. In Section 2.4. we describe the challenges and future work. Finally Section 2.5. is
the concluding section of this chapter.

2.2 Reasons for Adaptation

Currently, adaptation is mainly done by using different signal processing techniques
without including the human factors [Allison and Neuper, 2010, Makeig et al., 2012].
However, the user’s success in mastering the BCI skill appears to be a key element for BCI
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robustness. If the user is not able to produce stable and distinct EEG patterns, then no
signal processing algorithm would be able to recognize them [Lotte et al., 2013]. Up to a
certain extent, machine learning techniques can adapt to the signal variability. However,
most of those techniques are blind to the causes of signal variability. Identifying
those causes, accounting for them and possibly acting directly on them may assist the
decoding of (effected) signals. Such causes may act at different time scales, for instance a
person’s drop of attention may have a sudden and dramatic impact, while learning
rather operates on the long run. The term variability is used to describe the user,
environment and equipment "variability" , and more frequently, the signal variability.
These two types of variabilities are often treated as the same however we consider them
as one being the cause (the environment, the user etc.) and the other the effect (the
signal), respectively. Throughout this chapter, we mostly address the user variability as
the main cause and denote its various expressions as components.

2.2.1 Causes of Signal Variability

Causes of low BCI performance and usability can be somewhat solved with adaptive
techniques. We list and describe these causes and reason about the methods used to
improve the system. Methods are separated in two levels, as user or machine adaptation
methods. We add a time dimension to both levels in order to give a hint of the regularity
the adaptivity could take place.

Variability can be distinguished as: (1) short-term [Schlogl et al., 2010], i.e., signal
variabilities within trials or runs caused by, e.g. fluctuations in attention, mood, muscle
tension [Jeunet et al., 2015a]; (2) long-term [Schlogl et al., 2010], e.g. regulations of sen-
sorimotor rhythms (SMR) over sessions because of learning [Wolpaw and Mcfarland, 1994].

EEG variability can appear due to many causes, as follows:

• The equipment and experimental context: Equipment sensitivity to electric noise
present in the environment [Niedermeyer and da Silva, 2005], [Maby, 2016];

• Quality of the instructions given to the user to follow through the task [Neuper et al., 2005].

• Short term user components: Attention, mood [Nijboer et al., 2008], muscle
tension [Schumacher et al., 2015], naturally evolving during, and somewhat
driven by, the interaction with a BCI system. In case that there is no specific
instruction, user’s mental command itself can be a cause of signal variability. For
instance, during an MI task, the user may use a mental control in many different
ways using e.g. kinesthetic or visual motor imagery [Neuper et al., 2005].

• Long term user components: The user’s learning capacity to control the machine
depending on e.g. memory span, intrinsic motivation, curiosity, user profiles and
skills [Jeunet et al., 2015a]. Negative or positive loop in learning progression
could occur (see instructional design - [Keller, 2010]). For instance, a positive loop
concerns a motivated user whom being motivated has a higher attention level,
which would in turn, ideally, enhance learning and control, and finally, induce
higher motivation, and so complete the (virtuous) cycle [Mattout et al., 2015].
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2.2.2 Principles of Adaptation

When considering adaptation, here we mean adaptation of the machine to reduce the
negative effect of some user’s fluctuations onto the measured signals. In practice, (i)
reducing the impact of signal variability would require the use of advanced machine
learning techniques, such as adaptive spatial filters [Woehrle et al., 2015]; (ii) influenc-
ing the user variability would require adapting the machine output (feedback and
instructions) in order to keep the user in an optimal psychological state. The latter could
follow instructional design theories, e.g. by simplifying the layout or diminishing the
task difficulty if the user is in a state of fatigue [Sweller et al., 1998]. Ideally, the BCI
system should be (i) configured a priori for each subject, for instance based on their
stable characteristics, e.g. skills or profile, and also (ii) dynamically readjusted during
the usage, according to, e.g. their evolving cognitive and affective states.

Machine Learning The BCI community has long been aware of the need for adap-
tive signal processing and classification. Experimental results have confirmed that
using adaptive features and classifiers significantly improves BCI performances,
both offline and online [McFarland et al., 2011, Mattout et al., 2015]. Signal processing
adaptation appears to be particularly useful for spontaneous BCI such as motor imagery
[McFarland et al., 2011]. However, it can also be useful to reduce calibration time in
ERP-based BCI by starting with generic, subject-independent classifiers, and then
adapting them to each user during BCI use [Kindermans et al., 2014a].

Human learning The BCI community has concentrated on designing adaptive
machine learning techniques, somewhat because algorithms can be more objectively
analysed than the human psychological states. On the other hand, the effect of adapting
the BCI output (feedback and instructions) is harder to perceive because it indirectly
modifies the signal, involving a spectrum of user’s psychological states. If inappropriate
feedback is provided, subjects can learn incorrectly or have negative emotional
reactions, which could impair performance and discourage further skill development
[Barbero and Grosse-Wentrup, 2010]. This means, it would also highly affect the signals
and system’s accuracy [Wolpaw et al., 2002b]. In order to adapt the machine learning
techniques favouring the user needs and learning, we should investigate the instructional
design theories[Lotte et al., 2013]. These theories are useful for finding the appropriate
task and feedback for each user by adapting it according to their abilities, profiles and
performances. This way, the EEG patterns are regulated, which implies that to assist the
user’s learning also means to assist the machine learning.

2.3 Taxonomy for Adaptive BCI

We introduce a conceptual framework (taxonomy) which can be used as a tool for a clear
visualisation of the elements being adapted, as well as of the missing methods which
could possibly lead to optimal adaptive BCI design. It emphasizes existing solutions
encompassing most information used for creating a fully adaptive BCI system. The
taxonomy (see Figure 2.1) has a hierarchical structure, from the lowest level elements
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which endure rapid changes, to the highest level elements which change at a much
slower rate.
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Figure 2.1: Multiple signals (input) maybe observed and processed in parallel in order to infer complementary
states or intents, at the trial-wise time scale. All the information extracted from these parallel pipelines may
trigger the up-dating of the user or task model, which in turn might yield a decision from the conductor to
take action, such as adapting one of the elements of the pipeline, the interface, or within the user and task
models. It is comprised of 4 major elements, presented bottom-up: (1) the system pipeline is the path in which
the raw EEG signal goes through when manipulated by the computer; (2a) the user model is an abstraction of
the user’s states, skills and stable characteristics; (2b) the task model is an abstraction of the BCI task, one that
is tightly related and fully dependent on the user; (3) the interface is a representation of the BCI task, i.e., what
is observed by the user from the machine output; (4) the conductor masters the adaptation process by deciding
the moment, the manner and the elements of the whole system (pipeline, task, user, interface) to adapt.

The input of the system pipeline comes from brain activity patterns measured on
the user, while the output of the system (interface containing feedback/instruction) is
handled by the conductor and employed by the user. As they undergo rapid changes,
input and output take place in the bottom level, as summarized in Figure 2.1. To our
knowledge, for the first time, we conceptualize a possibility of having an intelligent
agent which could eventually replace the experimenter. For the sake of readability, we
introduce step by step each element of the taxonomy, starting bottom-up.
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2.3.1 The system pipeline

Figure 2.2: The system pipeline, acquiring and processing one of the input signals measured with e.g. EEG. For
the sake of readability, we explain the feedback as part of the system’s interface, coming from machine output.

The system pipeline includes:
(1) EEG features extracted from the raw signal (the input), possibly passing through:

a temporal filter, e.g. to filter noise or to choose an optimal frequency band; a spatial
filter, i.e., combining those electrodes which lead to more discriminable signals; e.g.
Common Spatial Pattern (CSP) filter and its variants. signal epoching, i.e., selecting a
time window to target an event of interest (a motor command or a stimulation);

The extracted EEG features are sent to (2) the classifier which translates signal
features into the estimated mental commands, using different machine learning
classification methods, e.g. Linear Discriminant Analysis (LDA), whose parameters (e.g.
weights) could be adapted.

The accumulation of classification labels over several time samples or epochs give
rise to (3) a decision, which often defines a speed-accuracy trade-off. Typically, with ERP-
based systems such as a P300-speller, this is done by accumulating evidence over multiple
stimulus repetition, to select a given letter when its probability of being the target letter
is higher than a given threshold, e.g. [Kindermans et al., 2014a, Mattout et al., 2015].

In order to maintain or improve BCI performances, one requires to accommodate the
signal variability, by adapting either one or several elements of the pipeline, e.g.:

• Feature extraction, in order to adapt to fast (e.g. a sudden faulty sensor) or slow
(e.g. change in the frequency of the signal of interest) changes;

• Classification, in order to change the number of classes, or to change the mapping
between each class label and signal features;

• Decision, in order to optimize performance, e.g. by adjusting the speed-accuracy
trade-off.
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2.3.1.1 Literature review on adaptive signal processing / machine learning

Adaptive feature extraction In order to extract features that adapt to the signal
variability, a number of adaptive filters have been proposed for BCI. To the best of our
knowledge, they are all supervised, i.e., they require the actual EEG class label. Most of
the proposed adaptive filters were spatial filters, and in particular adaptive CSP for motor
imagery-based BCI applications. For instance [Shenoy et al., 2006, Sun and Zhang, 2006]
proposed to re-optimize the CSP filters as a new batch of labeled data becomes
available. Later, [Zhao et al., 2008, Song et al., 2013] proposed new algorithms to incre-
mentally update the CSP spatial filters without the need to re-optimize everything.
[Tomioka et al., 2006] proposed a method to adapt spatial filters to changing EEG data
class distribution. Finally, an incrementally adaptive version of the xDAWN spatial filter
was proposed [Woehrle et al., 2015], dedicated to ERP based BCI. Adaptive temporal
filters were proposed in [Thomas et al., 2013b]. In this work, the optimal frequency
bands for discriminating motor imagery tasks were regularly re-estimated, and the
temporal filters adapted accordingly. It is worth noting that all these adaptive filters
algorithms were evaluated only in offline experiments. So, it is unknown how changing
the filters influences the users. Features extracted from EEG signals can be also computed
adaptively [Vidaurre and Schlogl, 2008]. In particular, there are a couple of methods
used to estimate features adaptively, with each new EEG sample measured, rather than
estimating them as the average feature from a full window of samples in a fixed way.
For instance, Adaptive AutoRegressive (AAR) features, estimates AR parameters and
use them as features for each new EEG sample [Schlogl et al., 2010] which was proven
superior to (fixed) AR parameters estimated on a full time window of samples, including
for online experiments. Another example of adaptive features is Adaptive Gaussian
Representation, which uses as features time-frequency weights that are adaptively
estimated for each time window [Costa and Cabral Jr, 2000]. Finally, compensating for
the features change is possible through the estimation of this change before being used
as the classifier input. As such, the corrected features will follow, more or less, the same
distribution over time, and thus a classifier trained on features at t-1, will still be
relevant to classify features at time t+1. For instance [Satti et al., 2010] proposed a
"Covariate Shift minimization" which first estimates a polynomial function, modeling
the moving of the features’ distribution center within time. Then, they subtracted this
function value at time t from the features at the same t, to correct for the deviation due
to time, which led to improvement of the classification accuracy.

Adaptive classifiers The majority of the work on adaptive signal processing for BCI
was so far on the design of adaptive classifiers, i.e., classifiers whose parameters were
incrementally re-estimated over time. Both supervised and unsupervised (not having
the class labels) adaptive classifiers were proposed. In the supervised category, multiple
classifiers were explored offline including Gaussian classifiers [Buttfield et al., 2006], LDA
or Quadratic Discriminant Analysis (QDA) [Shenoy et al., 2006, Schlogl et al., 2010] for
mental imagery-based BCI. For ERP-based BCI, [Woehrle et al., 2015] explored adaptive
Support Vector Machine (SVM), adaptive LDA, a stochastic gradient-based adaptive
linear classifier, and Online passive-aggressive algorithms. Online, still in a supervised
way, only the LDA/QDA [Vidaurre et al., 2007] and an adaptive variational Bayesian
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classifier [Sykacek et al., 2004] were explored. Unsupervised adaptation of the classifiers
is obviously much more difficult since the class labels, hence the class specific variability,
is unknown. Thus, unsupervised methods were proposed that try to estimate the
class labels of the new incoming samples first, before adapting the classifier based on
this estimation. This was explored offline in [Blumberg et al., 2007, Gan, 2006] for an
LDA classifier with motor imagery data. Another simple unsupervised adaptation of
the LDA classifier for motor imagery data was proposed and evaluated both offline
and online in [Vidaurre et al., 2010]. The idea is not to incrementally adapt all the
LDA parameters, but only its bias, which can be estimated without knowing the class
labels if we know that the data are balanced, i.e., with the same number of samples per
class. For ERP-based BCI, semi-supervised learning also proved useful for adaptation.
Semi-supervised learning consists in using a supervised classifier to estimate the labels
of unlabelled data, so to adapt this classifier, based on these initially unlabelled data.
This was explored with SVM and enabled to calibrate P300-spellers with less data than
with a fixed, non-adaptive classifier [Li et al., 2008, Lu et al., 2008]. Finally, both offline
and online, [Kindermans et al., 2014a] proposed a probabilistic method to adaptively
estimate the parameters of a linear classifier in P300-based spellers, which led to drastic
reduction in calibration time, essentially removing the need for the initial calibration
altogether. This method exploited the specific structure of the P300-speller, and notably
the frequency of samples from each class at each time, to probabilistically estimate the
most likely class label. In a related work, [Grizou et al., 2014] proposed a generic method
to adaptively estimate the parameters of the classifier without knowing the true class
labels by exploiting any structure that the application may have.

Fully adaptive signal processing It is possible to use fully adaptive BCI signal
processing pipelines. Several groups have explored BCI designs with both adaptive
features and classifiers. Offline adaptive xDAWN and several adaptive classifiers for
ERP-based BCIs are studied in [Woehrle et al., 2015], showing that each improved
performances as compared to a non-adaptive version. Even so, combining them both
improved the classification accuracy even further. Online for motor imagery based BCI,
[Vidaurre et al., 2007] explored using both Adaptive AR features with an Adaptive LDA.
Later, she also explored co-adaptive training, where both the machine and the user
are continuously learning, by using adaptive features and an adaptive LDA classifier
[Vidaurre et al., 2011]. This enabled some users, who were initially unable to control
the BCI, to reach classification performances better than by chance. This work was
later refined in [Faller et al., 2012] by using a simpler but fully adaptive setup with
auto-calibration, which proved to be efficient including for users with disabilities (Faller
2014). Co-adaptive training, using adaptive CSP Patches proved to be even more efficient
[Sannelli et al., 2016]. Altogether, these studies clearly stress the benefits of adaptive
signal processing for EEG-based BCI, both at the feature extraction, classifier and
decision levels. However, these works often omit the human factors.

Adaptive decision methods The decision can be adaptive as well, by e.g. adapting
the speed-accuracy trade-off for wheelchair control [Saeedi et al., 2016], or adapting the
number of repetitions in a P300 speller [Mattout et al., 2015]. While monitoring the
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user’s state, it is also possible to inhibit BCI interaction until specific requirements, such
as the user attention levels are met [George et al., 2011]. Monitoring the user during the
BCI task could be useful for revealing a way to adapt features over time, e.g. an increase
in workload which can impact MI features [Gerjets et al., 2014]. Hence, we introduce
what the user, and the task have to do, as a guide for adapting the system.

2.3.2 User and Task Model

In order to adapt all the elements of the system pipeline with respect to the user skills
and needs, it is useful to consider a user model (Figure 2.3). We assume that the user
components have a degree of changeability within certain time intervals and also react
to the machine output. Hence, we categorized the user model according to time, within a
timeline based on 3 time scales: runs, sessions and a loosely long time period. Note that
these time limitations can vary or be adapted as well if necessary. To create a complete
automatic adaptation would mean to refine the machine to manage more precisely the
user’s responses. For that purpose, we created a task model (Figure 2.4), containing the
necessary BCI task information, which components follow the same time intervals as the
user model. The timeline prescribes how often the system should be adapted/updated
and according to which element. Notably, the time intervals are chosen as they are
commonly used in the BCI community, but it is not necessary to have them fixed as such.

2.3.2.1 User model

We accustomed the Scherrer’s classification of affective states [Martín et al., 2011] for
the BCI purposes, and arranged them in the user model. Namely, the user model is an
abstraction of the user, where their skills, states, and stable characteristics are arranged
according to the time needed for them to change. The more we climb up, the more stable
the components are.

Figure 2.3: User model, containing 3 levels, arranged from the least stable (context dependent), to the most
stable components (stable characteristics).
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• Stable user characteristics: gender, age, culture, background, genetic predisposi-
tions (handedness) etc. These elements can also help accounting for inter subject
variability.

• User profile: (i) a given user may have developed particular (non-BCI or BCI)
skills which may help in the current BCI context or may be reinforced by the
ongoing practice. (ii) same for personality traits (openness, conscientiousness,
extroversion, agreeableness, neuroticism, flow proneness etc.); (iii) cognitive
abilities (memory span, imagination, attention span etc.);

• Context dependent characteristics, i.e., the user’s cognitive and affective state
(attention level, fear, stress, etc.) are very much related to the current task set and
environmental situation.

Note that context based characteristics can be assessed with questionnaires but also
physiological data, using different metrics. In that sense, we somewhat try to implicitly
represent these states through performance levels (classification accuracy), e.g. high
performance could be an indicator of high attention level, and so on. Hence, we could
add another contextual based, quasi state, that is, the performance.

Short review of adaptive methods related to the user model There have been
many works done in trying to predict the users’ performance (predictors) in order to
fully customize the system to their needs [Jeunet et al., 2016]. At the same time, knowing
that users will have different performances according to their various components, they
can be trained/adapted before using a BCI to improve those skills which have been found
to relate to the BCI skills, such as spatial abilities [Teillet et al., 2016].

Table 2.1 gathers several of these predictors along with BCI training methods that
can be used to take them into account, for each element of the user model. For a more
comprehensive report on existing predictors, see [Jeunet et al., 2016].
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Table 2.1: Examples of predictors and user training methods regarding each user model component.

Stable
characteristics Profile Context dependent components

Predictors

Age determining
performance

[Zich et al., 2016];
Paraplegic

[Vuckovic, 2014]
Gender

[Randolph, 2012]

Visual-motor
coordination

[Hammer et al., 2012];
Acquired skill
(gaming, sport -
[Randolph, 2012]);
Spatial abilities

[Jeunet et al., 2015a];
HighΘ and low α
powers reveal
illiteracy

[Ahn et al., 2013]

Confidence [Nijboer et al., 2008],
Motivation [Kleih et al., 2010,

Hammer et al., 2012]
Fear of BCIs and sense of control

[Witte et al., 2013];
γ oscillations

[Grosse-Wentrup and Schölkopf, 2012]

Training
adapta-
tion

/
Spatial ability
training

[Teillet et al., 2016];

Mindfulness training [Tan et al., 2014];
Attenuating γ-power for good
BCI-performance (attention)
[Grosse-Wentrup, 2011]

2.3.2.2 Task Model

The goal of the task model is to assist the BCI user in accomplishing his/her goal
(communication/control, rehabilitation, amusement or artistic expression). Similarly to
the user model, the task model can be organized hierarchically according to the three
following time scales: runs, sessions and long period.

Figure 2.4: Task model, arranged within 3 time scales.
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Components of the task model are typically determined beforehand, by the
experimenter, and are not changed during the BCI session. Nevertheless, we envision the
possibility to adapt each of these elements within the timeline.

The task model is comprised of:

• Purpose of a BCI: e.g. (1) a tool to control: prostheses, wheelchairs and other
devices; (2) a communication device: writing words on a screen etc; (3) a
tool for rehabilitation; after stroke (Birbaumer 2007), for paraplegic patients
[Vuckovic, 2014], for autistic and ADHD children [Friedrich et al., 2014], and oth-
ers; (4) a tool for artistic expression (creating music or paintings) or entertainment
[Lécuyer et al., 2008].

• Strategy: the most used strategies include Mental Imagery, P300 or SSEP. The
strategy will influence the choice of the initial signal processing and classification
techniques, e.g. using the Motor Imagery BCI strategy, the band-power initially
considered could be 8-12 Hz (mu rhythm) and 13-30 Hz (beta rhythm), measured
on the electrodes placed over the sensorimotor cortex, while P300 would mean
considering band-pass filtered time series (e.g. between 1-20 Hz) on fronto-central,
parietal and occipital regions.

• Exercise: It indicates the mental command to be used given a strategy, e.g. for MI
strategies, an exercise is chosen between various motor imageries such feet, hands,
or tongue movements. This may also includes defining the type of movement
(e.g.discrete or continuous).

The purpose or BCI goal is what influences or guides the overall adaptation. The strategy
and exercise, initialized by the BCI purpose, can be adapted automatically based on the
evolution of the user’s need or state, as informed by bottom-up message passing e.g. the
user’s performance being lower than a certain threshold could indicate the need to
change strategy or exercise.

Short review of adaptive methods related to the task model

Purpose – Depending on the purpose of the BCI, the adaptation methods will differ.
Rehabilitation will favour methods engaged in learning and self-regulation,
Communication will favour methods that improve accuracy and speed, while
application for entertainment will favour design and innovation etc. We have not
found literature fostering this idea, thus it should be left as a perspective for
future adaptive BCIs.

Strategies – A strategy can be switched to another, favouring the one in which the
user produces the clearest EEG patterns and has the highest performance.
In [Pfurtscheller et al., 2010, Müller-Putz et al., 2015], the use of Hybrid BCIs is
suggested, i.e., switching between or using multiple BCI strategies (e.g. P300, MI,
SSEP); or combining different measuring techniques (e.g. M/EEG or fNIRS); or
using tools apart from those in BCI, such as eye trackers, electrocardiograms, etc.
To account for these possible hybrid BCIs is why there are multiple instances of
the system pipeline in Figure 2.1.
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Exercises – An exercise depends on the chosen strategy. Adapting exercises within runs
means e.g. variating between hand or foot imagination, choosing the one that
had better performance [Friedrich et al., 2013, Fruitet et al., 2013]. Adaptation is
possible in larger time intervals such as within sessions, e.g. switching from 1D,
2D, to 3D MI-BCI tasks [McFarland et al., 2010], changing everything related to it
(the instructions and feedback).

Note that bottom elements can partake larger time-scales, however top level elements
such as purpose should not be changed within short-time intervals.

2.3.3 Machine Interface and Output

The machine interface is the representation of the BCI task. It is a set of somatosensory
information a user receives from the machine output. It is an environment containing
feedback and instructions, which is what the user can observe from the machine output.
They can be adapted by the conductor based on the information flowing from the
various signal processing pipelines, and through the user and task models, see figure 2.5.

Figure 2.5: Machine output, i.e., what the user can observe being: (i) Feedback that takes part of both the signal
processing pipeline as it is a representation of the classifier output, and the Interface as part of the sensory
information of the machine output; and (ii) Instruction which is independent from the classifier output and is
purely part of the Interface, but can be data-driven.

An interface can be designed to target some stable user characteristics, such as
applications for autistic children [Friedrich et al., 2014], or context dependent user com-
ponents, such as inducingmotivation in a social context [Bonnet et al., 2013], or catching
the user’s attention with video games[Ron-angevin, 2009]. Interfaces or the observable
machine output can appear in various modalities: typically visual [Neuper et al., 2005],
auditory [Daly et al., 2014], in an immersive virtual environment [Alimardani et al., 2014,
Vourvopoulos et al., 2016], tactile [Brouwer and Van Erp, 2010] or in a tangible form
suchas robotic arms [Meng et al., 2016],orwheelchairs [Waytowich and Krusienski, 2017].

2.3.3.1 Feedback

The feedback is usually a representation of the classifier’s output, managed by the
decision. It can be seen as the machine’s response to the user’s performance or states. It
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is useful for the user’s self-regulation process or learning, to be informed on his/her
progress when accomplishing the task. There are many different types of feedback,
supporting emotional or cognitive states of the user. It does not necessarily need to
be in the same modality as the interface, for instance [Jeunet et al., 2015b] wish to
decrease the cognitive load from the visual feedback and interface, by presenting
vibrotactile feedback. Hence, there can be multiple feedback at the same time and they
can be given in: (i) different modalities, typically visual [Neuper et al., 2005], but also
e.g. tactile [Brouwer and Van Erp, 2010], or a tangible avatar providing motivational
support [Pillette et al., 2017]; and with (ii) degrees of assistance or perceived difficulty
(biased feedback - [Barbero and Grosse-Wentrup, 2010]) to increase motivation and
sense of control. Adapting feedback could potentially bring benefits which favor
ergonomy, minimize fatigue, and optimize learning. This mostly remains to be explored.

2.3.3.2 Instructions and Stimuli

Instructions and stimuli are typically part of synchronous BCIs, which guide the user
to a timely or synchronized brain (re)activity. Instructions are for instance arrows
indicating the user to perform left or right hand motor imagery in MI BCI. Stimuli are,
for instance flashing letters in P300-spellers. Instructions and stimuli could be presented
independently from the classifier’s output, and not necessarily in the same modality as
the interface itself: visual, auditive or tactile for instance. Notably, the instructions and
stimuli can be adapted according to user components to vary in difficulty: (i) in speed,
e.g. the speed of instruction’s appearance might decrease over time, according to the
user’s attention levels, or (ii) order of appearance, to evoke desirable P300 reactions.
Additionally, it would be interesting to investigate whether presenting a block of
instructions for one-class motor imagery (arrow for left-hand) and then a block of the
other class (arrow for right hand) is easier for some users than presenting them in an
alternate manner (left-right). Or we could present haptic instructions that could
be especially useful for motor imagery. They could assist users in “remembering”
the somatosensory sensation of a specific movement, and more easily create mental
commands.

2.3.4 Conducting adaptation with the Conductor

As each of the framework elements can be adapted/updated separately, or in combination,
using various algorithms or criteria, we explicitly refer to a controlling agent in our
conceptual framework, which would preferably be created for a global adaptive BCI. It
gathers all the information available from the user, the task, the interface and the signal
processing pipelines, in order to decide the how, when and what to adapt. The conductor
would need an objective function or criteria of optimization, upon which it would make its
decisions. The criteria could favour only user states instead of system’s accuracy for
instance, which would highly depend on the BCI goal, situated in the Task model.

We draw an analogy with Intelligent Tutoring Systems (ITS), which are methods
creating objective metrics and computational models for learning with digital environ-
ment. With our adaptive framework, our user is the ITS student, the conductor is
the ITS tutor, and the task the ITS expert[Nkambou et al., 2010]. ITSs adapt content
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and activities for the purpose of challenging and guiding students in an optimal
way, i.e., preventing them from being too overwhelmed with difficult material or too
bored with easy or repetitive material [Murray and Arroyo, 2002]. There are many
methods dealing with adapting the content of the task to keep students’ attention and
motivation up, and most of them are inspired by the following two approaches: (i)
maintaining the zone of proximal development (ZPD) [Vygotsky, 1978]; (ii) being in flow
[Nakamura and Csikszentmihalyi, 2002]. The first, based on cognitive load theory for
instructional design [Luckin, 2001], may guide an indirect estimation of the person’s
cognitive resources [Allal and Ducrey, 2000]. Flow, originating from positive psychology,
is an autotelic (self-rewarding) state, where one is immersed in a task so that one loses
the sense of time, of self, and of the environment. They both concord with theories of
intrinsic motivation which suggest that motivation and learning improve if the proposed
exercises are at a level that is equal or slightly higher than the current user’s skill level.
Choosing automatically the optimal task, in real time, while considering the user and
task models, could bring promising results for BCI training and operation. For instance,
the conductor, as for some ITS, could use Multi-Armed Bandit algorithms to select an
optimal sequence of tasks and outputs [Clement et al., 2015].

2.4 Perspectives and Challenges

The perspectives we consider here correspond to some gaps we noticed while confronting
the literature we are aware of, to the proposed new taxonomy. First of all, the gaps in the
user model: training methods (outside the BCI context), and feedback and instructions
(during the BCI task) should adapt considering user’s:

(i) stable characteristics, e.g. considering patients with different disorders (paraplegic,
after stroke, autistic etc), also considering different preferences between children
and adults, women and men etc;

(ii) profile, i.e., for individuals who differ in their skills or personality traits;

(iii) context dependent characteristics, favouring those methods which increase
attention level, motivation etc.

Another important matter, instead of adapting the nature of the exercise based on the
user’s performance only (typically the classifier’s output), we could also account for
context dependent components e.g. the user’s attention or workload level, as monitored
through a passive BCI pipeline [Brouwer et al., 2012] or with other physiological sensors
(e.g. electro-dermal activity).

The challenges we encounter when considering the full adaptation with the
conductor are; (1) identifying metrics and criteria to optimize depending on the task, to
ensure relevant adaptation, i.e., favouring those adaptation methods which most concur
to user’s needs and goals; (2) designing computational models of the user and task
models; (3) testing the adaptive BCI online and validating it with real experiments; (4)
designing unsupervised adaptive features and classifiers, and validating them online
(most of them are supervised and only evaluated offline so far); (5) proposing adaptive
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feedback and exercises. As for the conductor, beside the algorithm that should decide
when and how to perform the adaptations, the criteria for adapting the whole system is
hidden in the "purpose" of the BCI, i.e., what one wishes to achieve. Hence, will the
conductor aim for flow or ZPD as an objective function (by adapting the task difficulty or
by presenting a biased feedback for example) or for system’s performance and speed (by
favouring higher classification accuracy). Finally, we need to ensure that adapting the
system will not impede the inevitable user adaptation (human learning), and thus lead
to a virtuous co-adaptation.

2.5 Conclusion

Throughout this chapter, we emphasized the need for adaptive methods in order to
optimize the design and online performance of BCI. We stressed out the fact that, in
order to create an overall adaptive system, it is not sufficient to consider adapting the
signal processing and classification techniques, but also the output (interface) and the
task parameters, in order to fully accommodate the user’s variability in terms of needs
and psycho-physiological states. Following that requirement, we created a taxonomy
(framework) for adaptive BCIs, comprised of: (i) one or several BCI systems/pipelines; (ii)
a user model, whose elements are arranged according to different time scales ; (iii) a task
model, enabling the system adaptation with respect to the user model; (iv) the interface,
being the task representation or the observable part of the machine output (v) the
conductor, an intelligent agent which implements the adaptive control of the whole
system.

For the first time, we conceptualize a fully adaptive BCI system, with respect
to the user needs and states. We introduce the BCI task with its representation
(interface) as a separate category from the standard user and system pipeline. We
find that acknowledging the role of a BCI task could be the key element to achieve
full co-adaptation between the user and machine. It enables a form of adaptation
that not only adjusts its system pipeline to the signal variabilities or the effect, but
also influences the cause – the user psychological states. That way we can prevent or
minimize undesired signal variabilities, and thus increase performance.

The existing adaptation methods are described through an extensive literature
review of each element of both types of models (user and task) and of possible low-level
pipelines for raw signal processing. The potential benefits of using this taxonomy are
numerous, for one it enables clear and methodological visualization of all the BCI system
components, their possible interaction and the way and context in which they could be
adapted. Moreover, this framework is also convenient for mapping the literature onto
each of the components in order to understand current issues in BCI in general, and to
visualize the gaps to be filled by future studies in order to further improve BCI usability.
We believe this taxonomy will contribute to delve possible future research paths, and
give rise to novel challenges and ventures.



PART II

Influencing the User with BCI
task

In this part, we adapt the BCI task that is observed by the user within a trial or run-wise
timescale (as presented in our taxonomy above 2.3). By adapting the content that
is perceived by the users is a way to influence and assist them to achieve optimal
behavior. Instead of waiting to deal with hughly noisy signal and its variabilities, we can
influence it beforehand by steering user psychological states to their favour, and
increase performance and learning.

The questions of how to influence or assist the user with a Motor Imagery task, what
is the optimal user state we wish to reach, and if we reach such state does it improve
performances? All these questions are considered in the first chapter 3.

If we can influence the user through a feedback and increase performance, then
we wish to know who would benefit from such adapted feedback? Furthermore, we
investigate whether an adapted feedback can increase learning as well. In the second
chapter 4, we use prediction models of user personality traits to tackle these questions.

If we can predict what type of personalities would benefit from what type of feedback
to increase their performance and learning, than we can use this knowledge to build a
simple adaptation model that would automatically select the optimal feedback for each
user. In the fourth chapter 5, the question is: can we find a model that can automatically
select and adapt optimal feedback to users depending on their personalities? Can we
increase performance with such an adaptive model?

In the third chapter 6, we propose a computational, data-driven and probabilistic
model to automatically provide optimal feedback and instructions by responding to user
short-term reactions, within a P300-speller BCI task.
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Chapter 3

Evaluating the Influence of
Flow on BCI Performance

Philosophical Thought Csikszentmihalyi, from Flow theory: “It is not the skills we
actually have that determine how we feel but the ones we think we have”. This is closely
related with our first philosophical part 1, in which we mention ontological statements
placing man as measure of all. In other words, if reality is manmade, then each person is
a measure of one’s own reality. Hence, the belief in one-self defines the “reality” or
perception of self.

The mismatch between what is observed and expected (thought) can lead to a
dissociation of the self, lack of self-esteem, and sense of agency. So, to reduce such
a mismatch, we must provide observations that approximately fit expectations of
each person. In this chapter, we could say that we try to find what users expect from
themselves in general and what they expect from a BCI in that moment, and we provide
observations approximate to their expectations until they gain enough confidence, and
are truly able to perform what they expect by themselves. In other words, we present
the users with what we believe they wish to perceive, and not what is in reality, in order
to increase their confidence, sense of agency.

3.1 Introduction

BCI systems showed quite an improvement with adaptive methods, i.e. adapting the
machine to the changeable brain signals of the user during a BCI task, as detailed in
chapter 2. Typically, adaptation is mainly done by using different signal processing
techniques without including human factors [Makeig et al., 2012]. However, if the users
do not understand how to manipulate a BCI system, or are not motivated to make
necessary effort for such manipulation, then they are not able to produce stable and
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distinct EEG patterns. In that case, no machine would be able to decode such signals
[Lotte et al., 2013]. Thus, for designing an interface, ignoring certain information about
the users, e.g. their skills, cognitive abilities and motivations, may represent one of the
major drawbacks for the advancement of BCIs. We have provided an extensive review
and proposed many solutions to adapt the machine by taking into account the user traits
and skills (reffered to as user profile) and states (referred to as context dependent
components) in chapter 2.

A potential improvement in BCI is to acknowledge how difficult it can be to
learn to produce mental commands (a very atypical skill) without a proper feedback
about the progress one has made. In every discipline, a certain feedback on one’s
performance is necessary to enable learning, as shown in the earliest work about Operant
Conditioning and Reinforcement Learning [Skinner, 1938]. Notably, this question was
studied by behaviorists for decades on animals, using rewards e.g. food, as extrinsic
motivation to promote desired behavior. As humans have more complex cognitive
functions, a more effective way to promote learning is in a social context, with a
tutor who would prepare and adapt a task according to the student’s competences.
The tutor’s feedback and well organized tasks would lead the disciple to gradually
build up knowledge and skills, to feel confident and to be intrinsically motivated,
or to be in the Zone of Proximal Development (ZPD)[Vygotsky, 1978]. Derived from
cognitive developmental theories [Vygotsky, 1978] and refined through instructional
design theories [Keller, 1987, Malone and Lepper, 1987], intrinsic motivation is to be a
substantial element for learning. Thus, it is important to carefully design the task, and
especially the feedback if we want to encourage learning and optimal performance.

Unfortunately, for long this was not the case in BCI community, as BCI systems were
improved mostly with novel machine learning techniques [Makeig et al., 2012]. The
result of neglecting the task representation or interface (feedback and instruction design)
led to often monotonous and repetitive content, further discouraging the user, and
leading to reduced skill and impaired performance [Cho et al., 2004, Kleih et al., 2010],
thus highly affecting the system’s accuracy. Potentially, instructional design theories
could add a missing piece for designing optimal BCI feedback [Lotte et al., 2013].

There have been extensive literature describing higher BCI user performance
and experience using game-like interfaces [Ron-angevin, 2009, Scherer et al., 2015].
Immersive and game-like environments attract users’ attention, induce intrinsic
motivation, thus promote learning and performance with less effort and frustration – for
a review see [Lumsden et al., 2016]. Even using extrinsic motivation such as monetary
reward can encourage users to perform better [Kleih et al., 2010]. Some studies showed
that user’s belief on their performance with biased feedback induced motivation and
thus higher performance [Barbero and Grosse-Wentrup, 2010]. Hence, sometimes it is
worth to trade the system’s accuracy to the perceived, subjective user’s feeling of
control.

Keeping that into account, a way to promote efficiency and motivation while
respecting the principles of instructional design leads us to the Theory of Flow
introduced by Csikszentmihalyi in [Csíkszentmihályi, 1975]. He was fascinated by
the capacity of artists to be in a state of enjoyment while effortlessly focused on a
task so immersive that one looses the perception of time, of self and of basic human
needs (hunger, sleep etc.). When in the flow state, people are absorbed in an activity,
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their focused awareness is narrowed, they lose self-consciousness, and they feel in
control of their environment. As a consequence, they often perform to the best of their
capacity with a sense of automaticity and a high level of confidence. Studies report flow
experience in numerous activities including rock climbing, dancing, chess, reading, etc.
[Csíkszentmihályi, 1975, Csikszentmihalyi and LeFevre, 1989].

Another pertinent element which encourages intrinsic motivation and is showed to
be in relation with flow, is music [Croom, 2015]. Recent studies showed that music
has an ergogenic effect on humans, i.e. physical enhancement while performing a
physical activity [Anshel and Marisi, 1978]. In [Karageorghis et al., 2010] was reported
that Haile Gebrselassie, an athlete who broke 10 000m world record in 1998, paced
his running on music he was listening to, i.e. synchronous music. There is evidence
that synchronous music, as a strong motivational effect, directly enhances physical
performance [Simpson and Karageorghis, 2006] while asynchronous (background)
music induces flow when accomplishing a task [Pates et al., 2003, Pain et al., 2011].
Most of all, background music with medium tempo (speed) has showed highest impact
on flow [Karageorghis et al., 2008].

Therefore, in order to improve BCI users’ performance and experience, it seems
promising to try to guide them towards the state of flow. Notably, in this chapter.
we want to improve user performance and overall experience during a BCI task. In
particular, our research question is: Does flow improve BCI user performance?

In section 3.1.1, we introduce the vast usage of Flow theory in task adaptation, then
we describe our MI BCI experiment, that includes an adaptation based on Flow theory
and is accompanied with asynchronous music in the background. Further in this section
we include the experiment details and we present the results of the performance online
and offline using standard metrics, but also using various novel metrics. From this
experiment we found interesting results concerning music influence on performance,
thus we performed an auxiliary experiment. We describe this experiment and provide
preliminary results in 3.3. Furthermore, we tackle the literature that explains the
benefits of sound on motor functions in general and provide perspectives that could be
useful for the BCI community.

3.1.1 Flow Theory for Adaptive Tasks

To be in the state of flow, a task needs to have the following requirements:

• To be immersive, with attractive visual/audio stimuli to maintain the user’s
attention. The principle of preserving flow with aesthetically pleasing and
playfull content have been researched largely in the context of human com-
puter interaction [Webster et al., 1993] and Internet navigation, e.g. e-learning
[Esteban-millat et al., 2014];

• To adapt the task difficulty with the user’s skills, i.e. an easy task might be boring
as a difficult one might be frustrating, hence finding the golden middle is the way
of feeling in control and keeping the motivation. Such difficulty adaptations
were found in games, to keep the gamer in flow [Bulitko and Brown, 2012], or
during teaching activities [Clement et al., 2015] to improve learning and keep the
student in the ZPD [Vygotsky, 1978].
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• To have clear goals and immediate feedback / rewards; aspired for educa-
tional purposes [Heutte et al., 2016], so that learning becomes an enjoying and
autotelic (self-rewarding) process [Ninaus et al., 2015].

In [Bulitko and Brown, 2012] they create a computational model of flow, using reinforce-
ment learning [Sutton and Barto, 2018] and Markov Decision Process (MDP), in which
the artificial agent at each state (task) has to choose such action that maximizes the
cumulative reward. They introduce into the decision making (action selection) the
degree of flow, being equal to : F (s) = f/|nt(s)− tmax(s)|+ ξ, where f is a constant, or
“flow-awareness coefficient” that is specific to every agent, nt(s) is the “per-action
amount of deliberation of the agent in state s” or simply put, the cognitive effort
necessary for finding the correct action in that state, while tmax(s) represents the
“domain specific constant” being simply the task difficulty in state s; and ξ is a very small
constant to keep F(s) bounded in case nt(s) = tmax(s). They show that a higher flow
awareness coefficient increases the reward and decreases the number of steps necessary
for correct action selection. This formula is inspired directly from the flow “function”,
represented in [Nakamura and Csikszentmihalyi, 2002], see figure 3.1.

Figure 3.1: Representation of flow state as “function” of skill and challenge (from Csikszentmihalyi).

If we present the same formula as a normal distribution F (s) = f · e−x2
, where

x =
√

(nt(s)− tmax(s))2 is a simple Euclidean distance. Then this formulation of flow
resembles to the Yerkes-Dodson law about optimal stress and performance, see figure 3.2.
The principle is the same, however here we have a direct relation with performance and
flow. If the task is too “stressful” or too challenging, it provokes anxiety, on the other
hand if it is too easy it provokes low arousal or boredom. This means that the task
should be nor too challenging nor too boring in order to provoke optimal user’s state
(intrinsic motivation) and optimal performance. Furthermore, experimental evidence
(recorded ERPs) of such “inverted curvilinear” relation between intrinsic motivation and
challenge was confirmed in [Ma et al., 2017]. They examine the near miss comparing to
the absolute loss of control of a game, measuring a sustained, negative shift in potential
that mirrors the anticipation of a motivational stimulus during the pre-feedback period
[Brunia et al., 2012].
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Figure 3.2: The Yerkes-Dodson Law on performance and optimal stress, from (hbr website)

The computationalmodel offlow for task adaptation,proposed in [Bulitko and Brown, 2012]
works if the task has different degrees of difficulty that requires different cognitive
effort, with a reward that can be intuitively calculated (e.g. achieving a goal with
high score in a game). In standard gaming it can work, however in a BCI in real-time
it is a lot more difficult, as the performance metrics are not quite accurate (e.g. we
cannot know the degree of cognitive workload or stress by simply evaluating the
classification accuracy for instance). If we do not know how to evaluate the effort, then
we do not know for certain in which direction to steer the task difficulty or the reward.
Nevertheless, if we have one clear goal, one task that is known beforehand, we can
assume that the user wishes to reach it. In that case, we can try to adapt the difficulty by
assisting the user in reaching that one goal, without knowing exactly how it might
reflect the real performance. We can first try with a simple computational model or
rather with simple rules that include the degree of flow (matching an approximation
of user skill and difficulty) and observe whether it made an impact on overall user
experience and performance.

3.2 Adapting Motor Imagery task with Flow

We want to improve user performance and overall experience during a BCI task. In
particular, our research question is: Does flow improve BCI user performance?We chose to
manipulate flow in a game-like environment with 2 factors: 1) Feedback adaptation to
match perceived task difficulty to user skills, and 2) Asynchronous music to encourage
the user. Thus, our following hypotheses are:

H1. Adapting the feedback improves flow, thus improves performance.
H2. Asynchronous music improves flow, thus improves performance.
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In consonance with the Flow theory, a motor imagery (MI) BCI task was presented in
an open-source 3D video game (TuxRacer 1). We investigated the effects of these two flow
factors on user’s flow state as well as on user performance, i.e. classification accuracy.

Manipulating Flow: In order to fulfill Flow theory requirements, we considered the
following:

• An immersive and ludic environment, here the TuxRacer video game was
adjusted for a 2-class Motor Imagery (MI) BCI. The game depicts a ski course, in
which a virtual penguin, Tux – controlled by the player – slides through various
slopes and has to catch as much fish as possible. With the BCI adjustments, Tux
was maneuvered with kinesthetic imagination of either left or right hand, see
Figure 3.3.

• The adaptation of the feedback bias, i.e. users were made to believe they
performed differently from what they really did, in order to be in the flow state. If
they had poor performances they were positively biased to a higher degree than if
they had fairly good performances, meaning they observed better performances
than real. However, when the performances were too good, then the users were
slightly negatively biased, so that the task would not seem too easy. This was
achieved by adaptively increasing or decreasing the classifier output, i.e. the
decoding of MI commands would seem different from what it was in reality.

• Asynchronous music consisted of 3 songs with medium tempo (120-160 beats
per min), played in the background during the BCI task. 15 persons (not related to
the experiment) voted on social media for songs which would motivate them
while playing TuxRacer. The selected songs are "Epic" by Alexey Anisimov (113s),
"Confident & Successful" by MFYM (168s) and "Acoustic Corporation" by OAP
(132s), all available on Jamendo2.

• Clear goals with immediate audio and visual feedback, i.e. to collect maxi-
mum points by manipulating Tux to move either left or right to catch fish. The
feedback is clear – once caught, the fish disappears with a brief audio stimulus
stressing that the fish was reached.

1https://extremetuxracer.sourceforge.io/
2https://www.jamendo.com/
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Figure 3.3: Participant using MI commands to play TuxRacer, e.g. imagining right hand movement to catch fish
on the right.

3.2.1 Experiment Details

We created a 2 (adapt vs no-adapt) by 2 (music vs no-music) mixed factorial design, i.e. a
between-subject adaptation factor, and a within-subject background music factor.

Protocol: 28 healthy subjects, naive to BCI, participated in the ~2 hour-long experiment
(5 women, mean age: 25.23 years, SD: 2.98). The first 30 minutes consisted of (i) signing
a consent form, (ii) installing of a 32 channels Brain Product LiveAmp EEG, (iii)
instructions given to the user and preparation, (iv) ~10 minutes system calibration
(40 trials of 7s) with the standard 2-class MI BCI (left/right hand) Graz protocol
[Pfurtscheller and Neuper, 2001]. In the Graz protocol, the user was presented with
arrows indicating the left or right side, to instruct the participant to imagine a left or
right hand movement. Afterwards, each participant took part in 2 counterbalanced
conditions of 20mins each with TuxRacer, (a) with and (b) without background music. 3
songs were repeated to accompany the music condition of 6 runs (1 song per 2 runs).
Each condition comprised of 6× 3min-runs, with 22 trials per run (11 for left and 11
for right hand, in random order), see Figure 3.4. Each trial consisted in performing
left/right hand MI to move Tux in order to catch fish on the left/right of the ski course,
respectively. There were 8 closely arranged fish per trial, to be caught within 3 seconds.
During 5-second long breaks between trials, the BCI controls were disabled so that Tux
would return in a neutral position (center on the ski course) and participants could rest.
The study was approved by the Inria ethics committee, COERLE (Comité opérationnel
d’évaluation des risques légaux et éthiques).
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Figure 3.4: The session started with 8min calibration of Graz protocol[Pfurtscheller and Neuper, 2001],
followed by 2 conditions, counterbalanced between subject. Each condition was either with or without music
comprised of 6 runs of 3 minutes each. The session ended with another Graz protocol for MI. The adapt
group received an adapted (biased) feedback for the whole session, contrary to the no-adapt group. Both
groups were asked to fill EduFlow [Heutte et al., 2016] questionnaires for the flow state assessment and BMRI
[Karageorghis et al., 1999] questionnaire for investigating the quality and motivation effect of music.

Questionnaires:

• Prior to the experiment, a Swedish Flow Proneness Questionnaire (SFPQ)
[Ullén et al., 2012] was sent to subjects to fill in at home. This 5 points Lik-
ert scale questionnaire measures flow proneness – flow as a person’s trait.

• To estimate to which extent users were in the state of flow, they were asked to fill
in the EduFlow questionnaire [Heutte et al., 2016] after each condition (music or
no-music), i.e., 2 times during the session. This 7 points Likert scale measures flow
state through 4 dimensions: 1stD is cognitive control, 2ndD is immersion, 3rdD is
selflessness and 4thD is autotelism – a self rewarding experience.

• To have a measure of the quality and motivation of the selected music, the
participants also filled a dedicated questionnaire, the Brunel Music Rating
Inventory (BMRI) [Karageorghis et al., 1999].

Signal processing: The real-time signal processing was performed using OpenVibe.
Acquired EEG was band-bass filtered with a Butterworth temporal filter between 8 and
30Hz. We computed the band power using a 1s time window sliding every 1/16ths. We
used a set of Common Spatial Patterns (CSP) spatial filters to reduce the 32 original
channels down to 6 "virtual" channels that maximize the differences between the
two class motor imagery [Ramoser et al., 2000]. A probabilistic SVM (Support Vector
Machine) with a linear kernel was used to classify the data between left and right classes
(regularization parameter C = 1). That way, the output of the SVM between 0 and 1,
indicated a class recognized with a certain degree of confidence. We scaled the output to
be between -1 and 1, to ease the computation and mapping to the game; e.g. -1 means
that the left-hand class was recognized with high confidence. We used a simple formula
for such scaling, yi = 2xi− 1, where yiε[−1, 1] and xiε[0, 1].We could easily scale from
one space to another, back and forth. The CSP and SVM were trained on data acquired
during the calibration phase (around 8mins of Graz protocol). The classifier output was
recorded in order to be analyzed later on and to compute the “online” performance.

Performances: The online performance corresponds to the peak and average perfor-
mance of the classifier that controlled the video game, i.e. the highest and the mean
classification accuracy over all trials’ time windows, respectively (see figure 3.5). To see
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to which point the classifier output is stable, we calculated std_output. It is the mean
value of the standard deviation of the classifier output for each trial, i.e., it gives an
std_output per class which is then averaged. Another metric of online performance we
used is the absolute distance between the classifier output and the extreme output
values (-1 for left class, and 1 for right class), for each trial.

Figure 3.5: Visual representation of peak performance and average performance, where xi,j is the classification
accuracy (i.e., number of in/correctly labeled class) for every trial i=1..n (for all runs together), and sample
j=1..m; while aj is the sum of all trials i=1..n, per sample j.

The offline performance was computed with a 4-folds cross validation per run,
regarding only the data recorded during the video game. In other words, data recorded
during the Graz protocol was not used to compute offline performances. We used
a LDA (Linear Discriminant Analysis) for the offline classification, since it is less
computationally demanding and it is based on same principles as SVM which would
produce same results. Both for online and offline analyses, one accuracy score was
computed over the music / no_music condition (i.e. one value per 6 runs of 22 trials).

Game controls: The TuxRacer game was controlled via a virtual joystick, using Lab
Streaming Layer (LSL) communication protocol. When a right hand movement was
recognized with the highest confidence (SVM output of 1), it was sent via LSL to the
virtual joystick which was tilted toward the right at its maximum angle, 45 degrees.
Inversely, when a left hand movement was recognized with high confidence (SVM output
of -1), the virtual joystick was tilted 45 degrees to the left. Between -1 and 1, the values of
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the virtual joystick were mapped linearly (from minus 45 to plus 45 degrees). Thanks to
this simple virtual joystick, we did not need to modify the usual input commands to the
complex BCI ones in the game. Basically, the virtual joystick can act as or replace the
usual computer controls, such as keys on the keyboard. Our freely available source code3

could be used to control any (linux) joystick-based game with a BCI.

Game modifications: We designed the BCI TuxRacer game so that its trial-timing and
structuremirror that of theGrazmotor imageryBCI protocol [Pfurtscheller and Neuper, 2001],
but in an immersive and motivating environment, as follows. We modified the shape of
the terrain, curving it alike a bobsleigh course. Consequently, by the force of gravity, Tux
would slide back to the middle of the course between trials, when the commands were
deactivated. Between trials, Tux is continuously skiing towards the following trial
with constant speed, enabling the users to see the next fish (the upcoming class). By
perceiving the side (left or right) of the fish, the users intuitively knew which hand to
imagine in order to push Tux towards the right direction and catch fish. We added little
flags before and after the fish to indicate the beginning and end of the trial, and assist
user with the timing of the mental command. We fixed the position of the fish on the ski
course edges, so that the targets were equidistant from the center of the ski course, i.e.,
same distance from Tux at the beginning of each trial. The reason for the equal distance
from the center is to enable the user to make the same mental effort for both MI classes
(left/right hand). By assuring a constant speed for Tux, a race (run) always lasted 3
minutes. The course was generated for each run to randomly change order of fish.

Game adaptation: The no_adapt (control) group was the first to participate in the
experiment. From the data acquired from the no_adapt group we wished to empirically
calculate a flow function with which we could adaptively bias the feedback in the adapt
group. This meant calculating an attractor point that represents the position of Tux in
the ski course in which users felt most in flow.

As a performance metric, we chose the Euclidean distance between classifier output
and its maximum values (-1 and 1), because in that way we could easily map it to
the classifier output. To reduce the potential confounding factor from the flow trait,
we subtracted the EduFlow scores (mean of all 4 dimensions) with the SFPQ (flow
proneness) score normalized with z-score. As consequence, it adjusted the overall flow
score around its average, i.e., high scores (above mean) decreased while low scores
(below mean) increased.

We mapped the performance (Euclidean distance) onto the classifier output and
performed a correlation with the flow score (Eduflow score - normalized SFPQ score). We
found a significant and positive correlation (Pearson’s coefficient: 0.42, p < 0.05), see
figure 3.6. We prolonged the linear regression line to the point in which the users would
have a maximum flow score (7 out of 7 points) and traced the according classifier output
value. That classifier output value represents a position of Tux in which the users felt
most in flow, and we call it the attractor a.We chose the attractor to be symmetrical
between classes, i.e., for right class it is a and for left class it is -a.

3https://github.com/conphyture/LSL2joy
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Figure 3.6: Positive correlation between Flow score (EduFlow subtracted with normalized SFPQ) and
classification output. The regression line (red) is prolonged to the maximum flow score point allowing us to
trace the “optimal value” of the classification output.

Thanks to the correlation, we empirically calculated the attractor to be a = 0.8 for
the right class or (a = −0.8 for the left class).

We used the attractor to adaptively lure Tux in. At each instant (1/16thsec sliding
window) we would retrieve the classifier output and add to it a value which would
push Tux a half-way towards our attractor. We chose to add half distance based
on Flow theory, to keep the difficulty in the "golden middle". Consequently, when
user performances were very poor, Tux was boosted to a higher extent towards the
attractor, i.e. in this case users were helped (positively biased) more than when their
performances were fairly good. However, when the performances were too good,
over the attractor value, Tux was pushed half distance towards it, i.e., the perceived
performances were deteriorated (feedback was negatively biased). The "flow" function is:
f(si) = si + (a−si)

2 , si ∈ [−1, 1], where si stands for user skill (i.e., classifier output
scaled to -1 for left, 1 for right, to ease the computation); a being the attractor and
constant value for all users, while (a− si)/2 being the half distance between the
attractor and skill, for all instants i within 22 trials of 3seconds, i = 1, ..(16Hz × 66s).
For better understanding of what the users observed, see figure 3.7.
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Figure 3.7: Examples of perceived position of Tux with biased feedback. Transparent Tux is a representation of
the real classifier output, while the biased Tux is represented in opaque. First case (left) is when real classifier
output is completely on the wrong side, thus Tux is more biased, than in second case (right), when real output
is near the center of the course. In the third case (below), the classifier output is above the attractor value, thus
Tux is negatively biased.

3.2.2 Results

The normal distribution of all the data was verified using a Shapiro-Wilk normality
test. Also, there was no significant difference between groups regarding their flow
trait, measured with SFPQ (1-way ANOVA, p = 0.25). ANCOVA tests showed that the
flow proneness or trait (measured by SFPQ) was not a confounding factor for neither
the mean of all 4 dimensions of EduFlow nor performances. There was no difference
between groups regarding music motivation BMRI (1-way ANOVA, p = 0.53). Mean score:
15.80, SD: 4.14 – maximum score with the questionnaire we distributed: 25.3. This means
that music motivation or flow proneness could not influence the results.

3.2.2.1 Flow-factor’s influence on EduFlow

Difference between groups adapt and no_adapt: We tested the effects of ourmixed
factorial design on each of the 4 dimensions measured by the EduFlow questionnaires
using a Markov Chain Monte Carlo (MCMC) method [Hadfield, 2010]. The MCMC showed
a significant difference between adapt and no-adapt along the 1st dimension (p < 0.01).
Participants in the adapt group reported higher cognitive control (mean: 5.38, SD: 0.84)
compared to the no_adapt group (mean: 4.49, SD: 0.83), see Figure 3.8.
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Figure 3.8: EduFlow score (7 Likert scale) for D1 ( cognitive control) depends on the between-subject factor
adapt and on the within-subject factor music. Users were in higher cognitive control in the adapt group (red)
than in no_adapt group (blue).

Music & EduFlow score: There was no correlation between the level of motivating
music, BMRI scores, and flow (p = 0.54).

We investigate the music order and separate users who had music as first condition,
called musicFirst and those who had music as second condition, called musicSecond, the
conditions were counterbalanced between subjects. A 2-way ANOVA, showed there was a
significant interaction between music presence and music order on the flow state
(EduFlow mean, p < 0.05) and especially on immersion (D2, p< 0.01). As in figure 3.9, it
looks like the users felt more in flow (immersed) with the type of condition they were
presented with first, i.e., if they started without music they felt more in flow without the
music (in the no_music condition) than with music in the background. On the other
hand those who started with music felt less in flow when the music was turned off in the
second condition.

On the side note however, this phenomenon could be explained not only by the
presence of music but simply that users felt more in flow during the first condition as it
was a new experience, and lost interest during the second one as it was roughly the same
setting.



CHAPTER 3. EVALUATING THE INFLUENCE OF FLOW ON BCI PERFORMANCE 64

Figure 3.9: 2-way ANOVA between music order (musicFirst vs musicSecond) or simply between conditions,
shows difference in immersion (2nd dimension of EduFlow score).

If we separate the adapt and no_adapt groups, we can see the same phenomena with
both groups, see3.10.

Figure 3.10: 3-way ANOVA showing immersion (D2 EduFlow) to be influenced by the music order (between
subject factor) and on music presence (within subject factor).

3.2.2.2 Flow-factor’s influence on Performance

Difference between groups adapt and no_adapt: The question whether our con-
ditions could directly improve the online performances was tested with a 2-way
ANOVA. There was a significant interaction between music and adaptation (with peak
performance p<0.05, see Figure 3.11, as well as with average performance p<0.01).
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Figure 3.11: The peak performance during the video game depending on the between-subject factor adapt and
on the within-subject factor music. In the no_adapt condition (right), users had higher online performances
without music.

We have also found such significant interaction between music and adaptation when
considering the distance between classifier output and the maximum values, -1 and 1,
(p<0.001) see figure 3.12.

Figure 3.12: Significant interaction between adapt and music when considering the distance between
classification output and maximum output values (-1, 1). Note that the smaller the distance, the better the
performance.

Music had a significant effect on the mentioned online performances (e.g. peak
performance mean with music: 0.62, SD: 0.09, and mean with no_music: 0.65, SD: 0.11,
p<0.05) but adaptation had not (p=0.08) nor did the music order (p=0.24). A post-hoc Tukey
analysis reveals that the one significant interaction occurs in the no_adapt condition,
between music (mean: 0.64, SD: 0.11) and no_music (mean: 0.68, SD: 0.13) (p<0.001).

There was no significant difference between groups for other performance metrics
(online – std_output and offline – cross-validation).
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Performance (online and offline) & EduFlow score: In the following we present
various correlations between flow score (accounting for its dimensions separately and
in average) and performance (offline, and online peak and average performance).
The correlations used is with repeated measures from [Bakdash and Marusich, 2017]
as we had 2 different conditions (music and nomusic) per subject. In other words,
our grouping factor are these 2 conditions. The repeated measures correlation is
implemented using an rmcorr package in R which uses Bootstraping to asses the
parameters’ accuracies [Efron and Tibshirani, 1994].

• Correlation Offline and EduFlow score

There was a positive correlation between the mean of all 4 dimensions of EduFlow and
offline performance (r = 0.36, p<0.01), see Figure 3.13. More precisely, offline performances
are significantly correlated with two dimensions of flow: the 2nd – immersion (p<0.01,
coefficient: 0.38) and the 4th – autotelism, (p<0.05, coefficient: 0.34). We corrected the
p-values for multiple comparisons with false discovery rate (FDR) [Noble, 2009].

Figure 3.13: Positive correlation between EduFlow score (mean of all 4D) and offline performance.~

When separately analyzing the 2 groups adapt and no_adapt, we find that there is no
signifiacnt correlation between any dimension of eduflow and offline performance in
the adapt group, while the no_adapt group has significant correlations as follows.
Eduflow D1 with r= 0.57 and p<0.01, and eduflow D2 with r= 0.72 and p < 0.001. P-values were
corrected with FDR.

• Correlation Online (peak and average performance) and EduFlow score

There was no correlation between flow (mean of all the EduFlow dimensions) and online
(peak and average) performance, even when separating into adapt and non-adapt groups
and flow dimensions.
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• Correlation of Standard deviation of classification & EduFlow score:

We were interested to see the relationship between flow and the standard deviation of
the classifier output (std_output), i.e., the perceived frequency of movements of Tux that
is a non-linear mapping of the stability of mental commands. We found a positive
correlation between the mean of all dimensions of Eduflow, D1, D2, and std_out of both
groups together (eduflow: r=0.31, p<0.05, D1: r= 0.34, p<0.05, D2: r= 0.35, p<0.05).

This makes sense because when the classifier is very erroneous it will be perceived as
“pushing” Tux directly to the opposite direction and “blocking it” there. Same for the
very high performances, it will directly “push” Tux towards the maximum value and
“stay” there. As we know from flow literature that people are most in flow when there is
small uncertainty to win, the “near-miss” effect [Ma et al., 2017]. Meaning, when the
classifier does manage to classify data to some degree, the movement of Tux makes more
micro variations, giving the feeling that Tux can still be pushed towards or away to/from
the target, which could indeed increase immersion.

When separating groups and dimensions, we found a positive correlation only
between std_output and immersion or D2 of EduFlow score in the non-adapt group only
(r= 0.62, p<0.01), see figure 3.14. P-values are corrcted with FDR.

Figure 3.14: Positive correlation between standard deviation of classifier output or the frequency of perceived
movement of Tux and immersion score of EduFlow (significant for non-adapt group).

This can be explained because the adapt group would perceive a generally lesser
degree of movement of Tux, a biased std_output. It was biased in a way that Tux had no
access to the wrong side of the course, that is opposite from the one in which the target
was. We can see especially in figure 3.14 that there is a stronger correlation within the
non-adapt group, probably because Tux had more degrees of freedom to move as
compared to the adapt group.

This result is unexpected if we think of the std_output as a variability or stability of
mental command, but as the Tux movement is a non-linear mapping of the mental
commands, we cannot assume this result applies to mental stability. However, it could be
explained if the person is being very much engaged, as opposed to when one abandons
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the task. As the classifier we use is discriminant, it can choose either left or right-hand
class, than the resting state of the participant or the abandon of the task could be far
from the hyperplane and closer to one of the classes, thus the classifier will simply
choose that one class more often.

• Correlation of Distance of classification and maximum values & EduFlow score:

We also investigate the relationship between the perceived distance of Tux from the
extreme points (-1, and 1), and the EduFlow score. There is a negative correlation
between the perceived distance and D2 of EduFlow – immersion (Pearson coefficient:
-0.33, p<0.05). This can be interpreted that the further Tux is from the fish (higher
distance) the less participants were immersed in the game, or that the less they were
immersed the further Tux was from the target. Both are possible as we cannot conclude
the causality with a correlation. Again, when we separate the groups, we find no
correlation for the adapt group. However, after applying the FDR (as we are separating
into 4 flow dimensions), the p-value ceases to be significant, and becomes a tendency
(p=0.07).

• Combining Distance and Standard Deviation of classification:

As immersion increases with std_output, while it decreases with distance, we can assume
that the immersion is highest when Tux is not far from the target and when it is not
“blocked” on one side but it makes frequent micro movements. This concords with the
literature about flow and the near-target, near-miss effect [Ma et al., 2017]. It seems
that due to the non-statoinarities in the signal, the online performance (peak and
average) might not be the best metric to measure user mental effort, but the std_out and
distance might be a better measure.

Performance (online and offline) & Music score: As tihs correlation includes only
one condition (in which the music was played), we use regular Pearsons correlation.
There was no correlation between BMRI scores and user performance, online (p = 0.78)
or offline (p = 0.20). However, when we separate the groups, we find that BMRI correlates
negatively with performances online (average performance with Pearson coefficient:
-0.45, p<0.05; and peak performance with Pearson coefficient: -0.41, p<0.05) in the adapt
group, while there is no correlation with the no_adapt group, see figure 3.15.
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Figure 3.15: Significant negative correlation in the adapt group between BMRI scores (level of motivating
music) and average performance, in red (Pearson coefficient: -0.45, p<0.05). The blue is the the non_adapt group
and BMRI has no significant correlation with performance. Although non-significant, performance has a
positive relation with motivating music in the non-adapt group.

From such result, we can assume that high performance subjects are not as perturbed
by motivating music as compared to the poor performance subjects (although we cannot
assume causation from a correlation). Note that there is no interaction between adap
and non-adapt groups, as one does not contain a significant correlation.

• Not balanced groups?

The Graz protocol (around 7mins) was conducted before and after the Tux Racer
gamer, as reminder see 3.4. Graz protocol performance was calculated using 4-fold
cross-validation. ANOVA shows no significant difference in pre-Graz performance
(p=0.16) between groups, however there was a significant difference between the
post-Graz performance between groups (p=0.02). Although the groups were balanced
statistically, the no_adapt group achieved a higher mean in Graz protocol score than the
adapt group (no_adapt group with a pre-score mean: 61.3, post-score mean: 72.9, and
adapt group with pre-score mean: 56.1, post score mean: 61.1), see 3.16. Hence, overall
results of flow and performance could have been slightly biased as the no_adapt group
achieved higher performances from start.
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Figure 3.16: Density plot of participants’ performance between adapt and non-adapt groups during Graz (pre
and post)

Furthermore, the groups could have been not balanced considering music education
or the user relation with music in everyday life, but unfortunately we have not acquired
such information. However, we have noted that some subjects imagined playing their
instrument for the Motor Imagery of hands in which case music perturbed their
concentration. This shows how music can give controversial effects on performance,
depending on the personal preferences. Note that we have only verified whether there is
difference in flow proneness between groups.

• High non-stationarity due to different training/testing environments?

We noticed that there was a negative correlation (Pearson’s coefficient: -0.88, p<0.001)
between the distinctivenesses (Riemannian distance between the covariance matrix of
each class) of the left and right classes of the classification accuracy (CA), see figure 3.17.
This can be related to the work from [Vidaurre et al., 2010] who showed that to account
for such data-shifts (due to non-stationarities), the hyperplane of the classifier should be
re-centered over time. Hence, here we can see that the differences in training and testing
environments (Graz training versus Tux game) could have an impact on performance.
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Figure 3.17: Negative correlation between the distinctiveness of left and right classes in Classification Accuracy
(CA_L for left and CA_R for right-hand class).

3.2.3 Discussion

We suppose that flow would increase performance, and we posed 2 major hypothesis:
H1. (a) Adapting feedback improves flow, (b) thus improves performance.
H2. (a) Asynchronous music improves flow, (b) thus improves performance.

H1. partially validated: (a) Adapting the task difficulty to users skill improved one
dimension of flow state, cognitive control. People who faced a challenge better suited to
their skill felt more in control. Thus, taking into account user’s states and skills when
designing a BCI task could lead to a greater user experience.

(b) Also, we showed that offline performances increase along with the flow score.
Notably, performances (offline) correlate mostly to the degree of user’s immersion and
control (when we analyze EduFlow score dimensions separately).

H2. in contradiction: (a) The presence of a background music had no effect on flow.
However the music order showed to have a significant effect on flow. If users started
with music they felt more in flow during music, and less in flow when the music turned
off, and vice versa. However, this could also be simply due to the loss of interest during
the second condition, unrelated to music order, i.e. level of flow decreased in the second
condition no matter the music.

(b) Music deteriorated the online performance (we could see that especially in
no_adapt group, see figure 3.11). Also, possibly, users who had poor performance could
have either been more easily distracted by motivating music or the music seemed more
motivating as their performances got lower, see figure 3.15. Therefore, this result
contradicts our second hypothesis.

As opposed to what we expected, we could not directly improve performance by
manipulating the flow factors we chose (adaptation and music). This could be because
the adapt group had lower performance on average than no_adapt group during Graz
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protocol (although not significant), see figure 3.16. Furthermore, they could also have
been non-balanced on account on music education.

Song Choice. The negative music influence could be also explained by the songs
we chose, since the motivational qualities of the music (measured with the BMRI
questionnaire) were not very high and were not correlated to any dimension of flow.
Instead of picking those songs from the public domain, users may have been more
motivated should they have chosen their own music.

Pace mismatch. The decrease of performance in the music condition might
come from the mismatch between the rhythm of the music and the pace of the game, i.e.
with the pace of the imagined hands movements. Indeed, some users shared informally
that they were imagining playing their musical instrument as MI commands and that
the songs further disturbed their own imagined song and MI pace.

Different training environment. There was no correlation between flow state
and online performances. That could be due to the differences between the calibration
environment (Graz protocol) and the game, e.g. the first being minimalistic (without
sound) and the latter a 3D video-game. Moreover, as the calibration was done without
music, maybe the performances online were better without it because the EEG signals
might have changed, therefore the classifier could not recognize them anymore. When
analyzing the overall classifier output (the average output per run and per class), we
noticed that around 78% of the time the classifier chooses the same class. This could be
related to the work from [Vidaurre et al., 2010] who showed that the data move in time
due to non-stationarities, and to achieve better performance is to move the hyperplane
of the classifier across time.

Online performance is not the best metric. Due to the difference in training
versus testing environments, the data shifted away from the hyperplane and caused the
online performance (peak and average) to shift as well. In that case, it might be better to
use the standard deviation of the classifier output (std_out) and the distance of the
penguin from the extreme classifier output points (-1, 1). To support this claim, we found
that the flow score, esspecially immersion and control correlate positively with std_out,
and negatively with distance, as opposed to average and peak perf which showed non
significant correlations.

Different experiment settings between 2 groups. Unfortunately during the first
half of the experiment (the non-adapt group) there were three experimenters present,
however due to medical issues, there was only one or two experimenters during the
second half (accompanying the adapt group). This is certainly one major drawback of
our experiment and possibly ther reason why the non-adapt group performed better, as
they had more encouragement and explanations provided by the experimenters .

Flow increases with performances. There was a positive correlation between
flow scores and offline performances (cross-vaidation of only the game data, without
Graz protocol). The state of flow was then positively correlated with users’ performance:
the feeling of immersion and the autotelic experience (i.e. the completion of the task was
self-rewarding) increased with the offline performance. Hence, not only encouraging a
state of flow would produce BCIs more pleasing to the users, but it might also benefit the
accuracy of the system. We still have to identify the direction of the correlation though:
does flow state increases performances or do good performances increase flow state?
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3.2.4 Conclusion

By investigating means to improve BCI user performance and usability through
instructional design theories, we came across the Flow Theory. This theory, which
describes an optimal user state, showed to improve performances in many fields. We
hypothesized that the state of flow could benefit BCIs. In a MI BCI task, we manipulated
flow by adapting the perceived difficulty and by adding a background music. We used an
immersive environment, a 3D video game, TuxRacer (the modification can be found
online 4).

Our main findings show that the adaptation increases one of the dimensions of flow –
cognitive control, and that user’s performances are positively correlated with flow. In
the future we could attempt to better suit the adaptation of the task to the users: it could
be biased adaptively over time, across several sessions, following the progress of the user.
We could re-calculate the attractor value over time as well (for reminder on the attractor,
see paragraph 3.2.1). We could also try to account for the amount of effort that the user
puts into the completion of the task in order to better comprehend such complex
phenomena. For example, measuring workload [Frey et al., 2016] could facilitate the
assessment of the challenge that users are facing and computationally predict the state
of flow [Bulitko and Brown, 2012].

According to the literature, asynchronous music with medium tempo would be the
best choice to follow the BCI task. Unexpectedly, the background music impeded the
performances of the user. This result stresses the importance of the choice of music to
accompany a task, and music education. One explanation could lie in the very BCI
paradigm we chose. Indeed, a motor imagery task might share similarities with actual
physical activity, where it had been shown that synchronousmusic could effectively
stimulate the sensory-motor cortex[Hardy and Lagasse, 2013]. Hence, a future work
would consist in synchronizing music to game’s cues (e.g. trials sequences) or to user’s
motor imagery pace. Such music, generated in real time, might enhance the flow
state and intrinsic motivation. Concurrently, we should verify if the user is musically
educated, as in some cases users imagined playing instruments as MI commands, and
because musicians elicit different brain activity in motor areas [Luo et al., 2012].

As a more technical improvement, in the future we should not change the environ-
ments between training and testing, especially not when involving sound. To reduce the
effect of the classification of one class more often, we can recenter the hyperplane over
time, as suggested in [Vidaurre et al., 2010].

Overall, the discrepancy in our results could stress that flow is a complex phenomenon,
and however beneficial to obtaining better BCI, the emerging interaction between its
components should be more thoroughly investigated. In addition, the influence of sound
should be more investigated as well, as detailed in the following section.

4https://github.com/jelenaLis/tux-modifs)
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3.3 Influence of Sound on MI performance

3.3.1 Introduction

Rhythmicity During the above-mentioned experiment, we found it interesting that
subjects reported to have been perturbed by the rhythm of the music which did not
follow their imagined motor movement. Indeed, rhythm not only activates motor areas
of the brain, there is evidence of rapid motor synchronization to an external rhythmic
cue in persons with and without neurological disability [LaGasse and Hardy, 2013].
Rhythmicity plays a critical part in learning, development, and performance, as timing of
movement is essential in manymotor control and cognitive functions [Thaut et al., 2009].
Specific findings indicate that auditory rhythmic cues add stability in motor control
immediately (within two or three stimuli) rather than through a gradual learning process
[Kenyon and Thaut, 2000]. The auditory external cue acts as a “forcing function” that
optimizes the efficiency of kinematic movement parameters [Thaut et al., 1999]. As we
can see, rhythmicity is closely related to motor control, thus having a mismatch between
motor imagery and music pace could greatly deteriorate performance in our experiment,
mentioned above.

Task-Related feedback Various congruent (task-related) visual feedback have been
examined and showed promising results, e.g. using body ownership illusions in VR
[Alimardani et al., 2014]. Even though in [Neuper et al., 2009] when closely examining
performance between congruent and abstract visual feedback of a hand grasp, it showed
no differences in performance. However, we believe that the reason might be because
the calibration was done in an abstract (Graz protocol) environment for both congruent
and abstract conditions. Meaning that the fact that the environment stayed the same for
the abstract condition while it changed for the congruent one could have biased their
results. Furthermore, the use of congruent sound versus non-congruent and out-of-pace
one, in combination with the visual modality demonstrated to increase performances in
MI of feet [Tidoni et al., 2014].

Auditory feedback We can see in several studies that performance in auditory
feedback tends to take more time to increase than in visual feedback [Nijboer et al., 2008,
McCreadie et al., 2013]. Thus, in short term the visual feedback tends to give higher
performance but the auditory feedback has shown potential and should be more
investigated. Moreover, it seems that the conditions (visual vs audio) were not comparable
as the short prerecorded sound samples of harp and bongo used in [Nijboer et al., 2008]
could have led to over-familiarization [Daly et al., 2014], while the visual feedback does
not have such negative effect. Also, the ERD/S were mapped on the sound volume,
which depending on age, can give impression of different note duration, time and
arousal [Kellaris et al., 1996]. For this reason, in [Daly et al., 2014] they have explored
variations of music tempo of a piano sound generated in real-time. They showed a strong
correlation between music tempo variations and ERD/ERS power. They explain it might
be due to the surprise effect, “the greater the variation of the tempo, the greater the
level of surprise that may be induced”. When comparing such auditory feedback with
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visual one (manipulating a ball on the screen), they have realized their mistake in the
design, as follows. With the visual feedback, users had a reference point, a central line
that indicated how far they have gone with the ball, comparing to the audio feedback in
which they did not have any baseline to compare their newly created tempo with.
Therefore, the user had to rely on their memory of the baseline tempo to judge whether
the current tempo of the music was greater or less than this. Thus, the additional
short-term memory requirements of this feedback modality may place additional
restrictions on the users’ ability to control it effectively. It seems that creating fairly
comparable conditions between visual and audio is a difficult task, so we will first
explore the benefits of congruent versus non-congruent sound in one modality before
comparing it to the visual one.

Sense of Presence There are many works that try to increase the sense of presence us-
ing realistic, spatial sound inVR [Nichols et al., 2000,Västfjäll, 2003, Larsson et al., 2004]
or games [de Gortari and Griffiths, 2014] or audio dramas, dialogues [Fryer et al., 2013].
It is shown that realistic sound effects may contribute to the sense of presence by
triggering vivid mental images [Fryer et al., 2013], or the auditory illusion of the sense
of presence (similar to the VR effect). Some also report that there is involuntary
movement during immersive sound cues [de Gortari and Griffiths, 2014]. This means, if
we use only realistic sound effects to describe an action or movement, we could create
rich visual, mental interpretations of such event and enhance motor functions.

All this research inspired us to explore the benefits of a realistic, task-related
(congruent) and “synchronised” audio feedback which would comply with the user’s
imagined movements. We investigate the potential of realistic and natural sounds
as audio feedback using a synthesizer from [Verron et al., 2009]. We made sure the
sound is not comprised of pre-recorded sound samples which repetition can become
annoying [Nijboer et al., 2008], and that the classification output is notmapped on
volume [Nijboer et al., 2008] to avoid different impressions of note duration and time, or
tempo [Daly et al., 2014] to avoid different levels of engagement of working memory.

Differently from previous works, we map the classification output on the synthetic
sound transformation between two realistic environmental sounds (the sound of
footsteps on gravel and the sound of water) within the congruent condition; and a
transformation from one abstract sound to another in the non-congruent condition. The
effect of such transformation is a sharper sound, or less noisy when classification output
is closer to its maximum values. The novelty of our work is that we use realistic sound
effects of the movement imagined, that we hope would provoke a high sense of presence,
or a sensory illusion (as the body-ownership illusion in congruent VR, but an audio one)
and increase performance in Motor Imagery BCI.

3.3.2 Experimental Design

Users task was either to imagine moving their feet or to rest during a 45min session. The
instructions consisted of 4-taps of sticks for MI of feet, and a relaxing sound of glass harp
for the resting state (figure 3.18).
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Figure 3.18: 2 conditions per session, congruent and non-congruent. A condition contained 2 runs of 30 trials
each. A trial lasted 13s and started with a high-pitch beep that announced the beginning of the condition at
t=0s, the instruction followed at t=1.5s for 3seconds and it was the same for both congruent and non-congruent
conditions. The feedback that followed at t=4.5 was either: (1.) congruent feedback which, depending on the
classifier output, could be a transformation a from sound of footsteps on gravel (for MI) to sound of water (for
rest); or (2.) non-congruent feedback transformed from one (MI) to another abstract sound (rest).

There were two conditions: (1.) "non-congruent", during which the feedback
provided was abstract (harmonic sounds with a different pitch, similar to glass harp) and
not related to any task (abstract sound for MI, and another abstract sound for rest) and
(2.) "congruent", during which the MI feedback reflected the sound of one’s footsteps on
gravel while the rest feedback was a relaxing sound of water. The choice of such sound for
the congruent MI task was motivated by the fact that rhythmical sounds relate to motor
cortex [Bengtsson et al., 2009]. We also wanted to provide an illusion of presence for the
congruent condition, provoking a kind of somatosensory effect through realistic sound
(gravel for MI and water for rest). For the same reason, both tasks in the non-congruent
condition were as non-rhythmic and as abstract as possible. The influence of feedback
was evaluated within-subjects, i.e., each subject had both congruent and non-congruent
feedback. The conditions were counterbalanced between subjects. Non-congruent and
congruent feedback were generated in real-time, the former with Max-MSP and the
latter with a dedicated synthesizer of environmental sounds [Verron et al., 2009].

Ten participants were recruited (2 women, mean age: 24.8, SD: 4.98, all BCI naives).
They were seated in front of a single speaker. 7 passive gold cup electrodes were placed
over Cz, C1, C2, FCz, CPz, CP1 and CP2 in the 10-20 system and connected to an OpenBCI
Cyton amplifier. Before the experiment, participants heard an example of each sound to
get accustomed to the task. This was chosen after a few pilot tests who imagined
walking on grass or other surfaces during the calibration phase which impaired their MI
during testing. Meaning, during the testing they were surprised when they heard
gravel (something else then what they expected and imagined beforehand, during
calibration). In order to keep the purpose of the experiment uncompromised and
subjects unbiased, the word congruent was not mentioned, but the feedback was simply
described as "environmental sounds" or "musical sounds". Calibration was purely audio,
it consisted of the same instruction as during testing, but without any feedback. A run of
calibration (30 trials of 13 seconds) was followed by two runs of congruent or two runs of
non-congruent feedback. Meaning that there were 4 runs in total during the testing
phase. A run contained 30 trials of 13 seconds, 15 for each class (rest or MI) in random
order.
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Signal Processing Data was calibrated on the training data during the calibration
phase (around 7mins). Using OpenViBE, the signal was band-bass filtered with a
Butterworth temporal filter in the mu (8-13 Hz) and beta (13-30 Hz) bands, passed
to a Filter Bank Common Spatial Pattern filter (FB-CSP), reducing 7 channels into 4
virtual ones that maximize the differences between the two classes rest vs MI of feet
[Ramoser et al., 2000]. We computed the band power using a 1s time window sliding
every 1/16th second. Each feature was classified real-time using linear discriminant
analysis (LDA). Typically, the LDA classifier returns distances from a hyperplane that are
“not bounded” or can be between±∞. However, in OpenVibe the LDA is bounded
between 0 and 1, returning a “fake” probability value. The classifier output was recorded
in order to be analyzed later on and to compute the “online” performance.

In offline analysis, we used the same band-pass filter and FB-CSP. There was no use of
a sliding window, in order to ease the computation and avoid overlapping samples
between training and testing datasets. For offline processing we used a regularized LDA
[Ledoit and Wolf, 2004] and 10-fold cross-validation (not including calibration data),

In EEG-Lab, we filter raw EEG between 1Hz and 40Hz and analyze the differences in
power spectral density.

Statistical analysis For the statistical analyses of performance (online and offline),
we tested for significance using Wilcoxon signed-rank tests, considering the population
was small, and it did not follow a normal distribution.

When considering the power density analysis between (1Hz and 40Hz), EEG-Lab
function integrates an ANOVA, in which we selected p<0.05, for observing any significant
differences.

3.3.3 Preliminary Results

There was no significant difference in online (peak) performance between the two
feedback (Figure 3.19). An offline analysis revealed a significant difference (p < 0.05) in
classification accuracy when a classifier was trained separately on the "congruent"
and "non-congruent" runs (respectively 66.1%, SD: 7.45 and 63.9% SD: 7.8, 10-fold
cross-validation, Figure 3.19).
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Figure 3.19: Differences between the congruent and non-congruent conditions, in offline (left) and online
(right) performances,

As online performance, we also investigated the absolute distance of the (LDA of
OpenVibe) classifier output from the maximal values (scaled from 0 and 1 to -1 for rest
class, and 1 for feet class). The distance in congruent condition (mean; 0.96, SD: 0.03) is
significantly smaller than in non-congruent condition (mean: 0.98, SD: 0.03), see figure
3.20.

●0.88

0.92

0.96

1.00

congruent non−congruent

Condition

O
nl

in
e 

di
st

Figure 3.20: Difference in distance between congruent and non-congruent conditions.



CHAPTER 3. EVALUATING THE INFLUENCE OF FLOW ON BCI PERFORMANCE 79

In EEG-Lab, we can observed changes in EEG spectral power, with more activation in
the "congruent" condition than in non-congruent one, within the beta band during rest
(Figure 3.21) and within both mu and beta bands during MI (Figure 3.22).

Figure 3.21: EEG spectral power during rest for each electrode (7 in total). The gray area indicates a significantly
higher power (log-power spectral density) around beta (25Hz) in FCz, and around mu (8Hz and 15Hz) in CPz, for
congruent (blue) than for non-congruent (green).
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Figure 3.22: EEG spectral power duringMI of feet for each electrode (7 in total). The gray area indicates a
significantly higher power (log-power spectral density) around 8Hz in FCz, in C1, and in C2, for congruent
(blue) than for non-congruent (green).

When comparing the spectral analysis between congruent and non-congruent, we
observe significant differences as follows.

1. During rest:

• Stronger power around 25Hz could be an indication of a stronger beta rebound,
providing a stronger ERS.

• Stronger power around 8Hz and 15Hz indicating a stronger mu, could indicate a
stronger relaxing effect, producing stronger alpha waves (CPz could capture
signals from occipito-parietal lobe).

2. During motor imagery of feet:

• Stronger power between 1-8Hz could be an indication of a stronger mu, providing
a stronger ERS which is unusual as during the motor imagination we observe
rather a stronger ERD. Hence, here we actually observe a weaker ERD.
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3.3.3.1 Brief Discussion:

While peak performance remained unchanged with a congruent feedback, we could
observe an increase in offline performance (and decrease in distance) in the congruent
feedback between rest and MI signals. As for the spectral analysis, we observe that there
is stronger power in both beta and mu bands during both rest and MI of feet of the
congruent as compared to non-congruent feedback. It could be that the rhythmicity and
realistic sound influenced a more vivid imagination, thus stronger power. These analyses
should be more thoroughly investigated before reaching any conclusion.

Informal post-hoc interviews revealed that participants felt assisted by the congruent
feedback. However, when their intentions were wrongly classified in congruent feedback,
e.g. the classifier would produce the sound of footsteps instead of relaxing water, this
perturbed the participants more than in non-congruent case, in which the wrong
feedback would just be another abstract sound.

In a pilot study, we demonstrate how a congruent auditory feedback could improve
classification in a MI BCI, a promising result (considering the equipment and number of
data) for creating alternate feedback modality. This prompts for further investigations
on a larger sample and with more channels to better assess the underlying change in
brain activity. In the future, the experiment could benefit from a surround sound system
(multiple speakers) that could enable full immersion in such realistic environmental sound
[Hendrix and Barfield, 1996]. This study encourages further research on congruent BCI
tasks, which can assist users to achieve better performances.

3.3.4 Conclusion

The environment, the content, and task difficulty have great impact on the user
performance in general. Indeed, what seems to be additional ”side” sensory information
such as sound effects or background music, it has showed to be of significant importance
for BCI performance as well (see experiment on flow 3). Therefore, it is to be used
with caution. Considering that a BCI user is not only a standard user of a computer
device, but is a part of the system (one’s brain activity is an essential part of BCI), such
sensory information can greatly influence the machine performance. Thus we should
acknowledge their potential impact and explore more thoroughly the influences on
neurophysiological processes as well as on the system performance.

Moreover, we should investigate more thoroughly the user factors such as traits, to
understand better the effects of the BCI task representation on performance. In the next
chapter, we perform such investigation using prediction models.



Chapter 4

Predicting Optimal Feedback
Bias for Performance and
Learning

“All models are wrong, but some are useful,” George Box.

4.1 Introduction

As detailed in chapter 2, user traits such as independence, self-reliance and ab-
stractedness positively relate to performance, while tension negatively relates to
performance [Jeunet et al., 2015a]. Hence, among other traits, we focus mostly on user
personalities such as independence, i.e., a composite personality trait containing
dominance, social boldness and so on; anxiety, i.e., a composite trait containing
tension, worry and so on. We believe that competitiveness should be investigated
as well. Notably, in sports there is evidence of a strong relationship between com-
petitiveness, anxiety, self confidence and performance [Martin and Gill, 1991]. When
exercising on a stationary bicycle in a VR game environment, those who were com-
petitive showed to give more effort when compared to non-competitive players
[Snyder et al., 2012]. Furthermore, the use of games and competitions to promote in-
trinsic motivation and performance has shown useful for learning various programming
skills [Burguillo, 2010]. Following such rationale, it was shown that influencing human
factors with positively biased, congruent, game-like and proprioceptive feedback, from
VR to robotic hands, can increase performance [Barbero and Grosse-Wentrup, 2010,
Ramos-Murguialday et al., 2012][Alimardani et al., 2014, Braun et al., 2016].

In our first MI BCI experiment, detailed in Chapter 3, we wished to explore the
influence of an adaptive biased feedback on one’s performance and psychological state
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of flow, a state of immersion, control and pleasure. Thanks to this experiment, we have
confirmed that by adaptively biasing the feedback we can increase the state of flow
(especially the sense of control). However, we have not explored exactly what kind of bias
wouldbe useful forwhat type of userpersonality. Moreover,we performedonly one session
experiment, hence we could not investigate the effects on learning rate, i.e., the evolution
of performance over time. Note that, to our knowledge, none have included the user
traits when investigating the effect of a bias on learning but have indeed mentioned it to
be a usefull information[Alimardani et al., 2014, Barbero and Grosse-Wentrup, 2010].

That is why in this experiment, we perform two sessions and investigate the
relationships between personality traits, performance and learning the motor imagery
skill, that is, to achieve a fluent control of the BCI machine. For our new MI experiment,
we use the same game-like environment (Tux Racer) and task settings (motor imagery of
hands) as in our previous experiment, in order to favor a robust experiment design. As
the MI BCI task is in a game-like setting (accumulating points with every fish caught), we
consider the competitiveness trait as a new potential predictor for BCI performance and
learning.

We believe that adaptation should dynamically vary for each user in order to
increase both performance and learning. In other words, we want to acquire enough
data to be able to predict what bias would assist what type of personality in order to
increase performance and learning. To acquire enough data, we limit ourselves into
using 3 different biases: positive, negative or none throughout both sessions; differently
from our previous experiment where each person could receive a positive and negative
feedback within one run.

In this chapter, we wish to answer the question “What is the best feedback bias
(positively biased, negatively biased, zero bias) for what personality type, initial user
state (cognitive load and flow) and performance during calibration, in order to increase
learning and performance?”

Considering the results and suggestions from [Barbero and Grosse-Wentrup, 2010]
and [Jeunet et al., 2015a]. We thus make the following hypotheses:

H1. We expect that positive bias will motivate those achieving low performance
(as hypothesized in [Barbero and Grosse-Wentrup, 2010]), who are at the same time
typically anxious, non-independent and non-competitive. We believe that such
motivation will increase performance and learning.

H2. We expect that negative bias will demotivate users achieving low performance
[Barbero and Grosse-Wentrup, 2010], who are at the same time typically anxious, non-
competitive, and non-independent. We believe that such demotivation will deteriorate
performance and learning.

H3. We expect that positive bias will demotivate those achieving high performance
[Barbero and Grosse-Wentrup, 2010], who are at the same time non-anxious (in flow),
competitive, and independent. We believe that such demotivation will deteriorate
performance and learning.
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H4. We expect that negative bias will motivate those achieving high performance
[Barbero and Grosse-Wentrup, 2010], who are at the same time non-anxious (in flow),
competitive, and independent. We believe that suchmotivation will increase performance
and learning.

From these collected data and results, we wish to find a general model that could
predict the optimal feedback bias for each user, depending on one’s profile (user traits)
and context dependent components, that are, states (cognitive load and flow) and calibration
performances. We assume that the best choice of feedback bias would change whether it
is learning, performance or the state of flow we wish to increase/predict. In other words,
we can propose different models depending on the criteria we choose.

In this chapter, in section 4.2 we describe what we have learned from our previous
MI experiment which enabled us to improve many design parameters in our new MI
experiment. In section 4.3, we describe the experimental design, our bias function, signal
processing and performance metrics used, as well as our prediction models. In section
4.4 we present our preliminary results including short comments; in 4.5 we interpret
more thoroughly our results, and finally in section 4.6 we provide our concluding words,
and describe future works and challenges for creating an adaptive model for MI-BCI
based on this research.

4.2 Lessons learned from our first MI experiment:

We have performed a MI experiment in which we investigated the influence of an
adaptively biased feedback on performance and flow state. In that experiment, we
tried-out many novel methods which permitted us to learn many lessons, as follows.

The unmatching rhythmicity.We learned the importance of rhythmicity between
background music and imagination of one’s motor movements. Also, it is possible that
the more such “asynchronous” music is motivating, the more distracting it can be for
performing motor imagery for users having poor performance (see reminder of negative
correlation between motivating effect of music and performance 3.2.4).

Current Improvement. This gave us the insight of the strong and controversial impact
music can have on MI performance, so we removed background music during both
calibration and testing. We kept only the sound of special effects, such as the sliding
sound of Tux through snow, and a “bloop” sound when the fish is caught.

Changing environments. We learned the impeding effect a changing environment
(in visual and auditory modalities) between calibration and testing can have on
performances (see 3.2.3).

Current Improvement. Thanks to this discovery, we kept the same environment
between calibration and testing phases, that is, the Tux Racer game with special sound
effects in both phases.

Data non-stationarity. We learned that due to non-stationarities in EEG especially
due to different environments between calibration and testing, the discriminative
classifier output is often inclined towards one class, i.e., it chooses one class more often,
even if the classes are balanced in number of trials, as reminder see 3.2.3.
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Current Improvement. To account for the data non-stationarity, (i.e., data moves
in time, which puts the classifier out of center), we implement the method from
[Vidaurre et al., 2010]. They recenter the hyperplane over time to avoid any inclination
towards one class, and assure the validity of our positive/negative bias strategies. We
provide more details in 4.3 later on.

Linear bias function. As mentioned, due to signal non-stationarity, Tux would
often result in going towards one side, which brings frustration, and lack of feeling in
control which relates to performances. To increase sense of control and flow, in our
previous experiment, we reduced the possibility of Tux going to the opposite (wrong)
direction from the target. Even though we succeeded by using a simple linear function
for the adaptive bias, it might not be optimal for increasing learning as it reduces the
space of Tux movement into almost half, see figure 4.1.

Figure 4.1: Representation of classifier output (x-axis) with biased output (y-axis) for the right-hand class, using
the linear function from previous experiment. At classification output of 0 (complete left, opposite from target)
the penguin is pushed for a half distance to the attractor (0.8), i.e., the biased output has a value around 0.4. This
means that Tux will never get to the complete opposite of the target. If the values from classification output
are above the attractor, the user receives a minor negative feedback, again half distance to the attractor. As you
see in the figure, when the classification output is 1, it is reduced to around 0.9 in the biased output. Being that
the bias is smoothed, it induces Tux to make micro movements between these biased values, e.g. it can shortly
reach the maximum value 1 when classification output is above the attractor, or around 0.3 when it is below.

Current Improvement. To enable users a full progress in learning by allowing Tux to
access all the spaces of the ski-course, we use a non-linear function for our bias. As the
classifier (SVM) output are probabilities [0 ,1], we used a beta cumulative distribution
function (beta CDF) to bias the feedback. This enabled Tux to access every point of the
course while being biased. We provide more details in 4.3 later on.
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Motor Imagery task. The imagined movements of motor imagery can be very different
between participants. Novices often do not understand what a MI task implies as its
sensation is difficult to explain, i.e., the community still lacks dedicated terms for such
phenomena. Typically in standard motor imagery experiments, we do not control for
such variabilities unless it is the subject of research as in [Neuper et al., 2005].

Current Improvement. To assure less variability between the movements imagined by
the participants and reduce ambiguity in motor imagery task, we offered a set of objects
suggesting movements to train on before the BCI task. The possible movements included:
1. moving and clicking on the mouse, 2. tapping on the computer keyboard, 3. tapping
on the drums of the piano keyboard (without sound), 4. playing the piano keyboard
(without sound), 5. turning the switches for volume on the piano keyboard (without
sound), 6. pinching with a pinch or a nail-cutter, 7. writing with a pen on the paper,
8. cutting with scissors, 9. squeezing a shower gel bottle or a heating pad (without
heat), see figure 4.2. The participants were suggested these objects if they needed a
somatosensory reminder of a movement. Otherwise, they could choose whatever
movement they wanted, preferably those which they perform the most in their daily
lives, and those that include finger movements.

Figure 4.2: We suggested physical training on objects during the placement of electrodes and experience
preparations. By showing what kind of movements they could imagine, novice users could have a better idea of
how an imagined movement can look or feel like. Of course, the participants were not obliged to choose any
object if they did not want to.

4.3 Experimental Design

We created a 3-conditions between subject design: (1.) the no_bias (control) group in
which the classifier output was not biased, (2.) the positive_bias group in which the
classifier output was positively biased in real-time, and (3.) negative_bias group in which
the classifier output was negatively biased real-time. The bias function was the same per
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group throughout the two sessions. The study was approved (validation number 2019-05)
by the Inria ethics committee, COERLE (Comité opérationnel d’évaluation des risques
légaux et éthiques).

Protocol: 30 healthy participants were recruited (6 not BCI naive, 12 women, mean
age: 28.56 years, SD: 6.96). We created 3 groups, hence 10 participants were randomly
assigned to each group. Each participant was engaged in 2 sessions (2 different days of a
1-to-5 days interval). A run contained 40 trials (20 trials per class) making each course or
run last 5 minutes and 25 seconds. Each 4 second trial was enclosed by two flags, within
which a set of 8 closely arranged fish in a row were to be caught within∼3 seconds. It
was followed by a∼4 second pause, during which Tux controls were deactivated, and
participants could rest or adjust their position if needed. Each session lasted∼2 hours
and consisted of 3 main parts, see figure 4.3.

Figure 4.3: Experimental Protocol in which participants filled 3 questionnaires at home; and during the
experiment there were 3 parts: preparations, machine calibration during which users did not control the
machine and testing phase during which the users controlled the machine.

1. Part I is the experiment preparation (around 30mins), duringwhich the participants:

• signed the consent form which contained all the details about the experiment and
their ethical rights;

• filled in an information form about their demographics, previous encounters with
BCIs, and music/sport/gaming/meditation experiences or education:

• watched the explanatory 3-minutes animated movie about what we can measure
with EEG, advices on how to produce motor imagery and control the machine, and
the principles of the TuxRacer game;

• asked remaining questions about the experiment and tried-out objects for
motor training (see figure 4.2); while the experimenter was placing the EEG cap.
Participants were not obliged to try-out any of the presented object unless they
needed a somatosensory reminder of a movement, so that they could more easily
reproduce such movement mentally.
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• watched their own raw EEG signals in real-time to see for themselves the negative
effects of facial movements and blinks.

2. Part II is the machine training or calibration (2 runs of 40 trials each, around 15mins),
during which participants:

• repeatedly performed their imagined movement for left or right hand at a time
according to the position of the fish;

• received “fake” feedback in which Tux was controlled by a script that generated
quasi-random behavior (it was coded to go more often towards the fish). Users
were told that they were not the ones controlling the game.

• perceived Tux sliding on a pink snowboard, instead of its own belly, which was the
visual indication of the calibration phase.

• filledout a questionnaire on perceiveddifficulty (NASA-TLX) [Hart and Staveland, 1988]
and flow (EduFlow) [Heutte et al., 2016], once after the 2 runs were finished.

From the data acquired during calibration, the machine:

• trained the CSP spatial filter;

• selected optimal frequency bands [Blankertz et al., 2007];

• trained an SVM discriminative classifier for left and right hand-class.

3. Part III is the testing phase (6 runs, around 45mins) during which the participants:

• controlled Tux with their motor imagery.

• filled in NASA-TLX and EduFlow questionnaires after each run.

• played a bonus run (non obligatory), choosing an existing ski course from the
original Tux game to manipulate it as self-paced MI BCI.

Note that for the second session we did not use the data from the first one, i.e., calibration
phase was performed again from zero giving the subjects the opportunity to choose
another movement if they wanted.

Questionnaires. The questionnaires to be filled at home are:

• Personality tests 16PF5 [Cattell and P. Cattell, 1995], providing 16 primary scores
of personality traits such as warmth, reasoning, emotional stability, dominance,
liveliness, rule consciousness, social boldness, sensitivity, vigilance, abstractness,
privateness, apprehension, openness to change, self-reliance, perfectionism
and tension; and 5 global scores of personality being extroversion, anxiety,
tough-mindedness, independence and self-control that are computed as linear
combinations of the primary ones. For a better understanding of the global
personality traits, we detail their composition:
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– Extroversion contains liveliness, warmth, social boldness, a negative
self-reliance and negative privateness;

– Anxiety contains tension, apprehension, vigilance, and emotional instability;

– Tough-mindedness is the opposite of all following factors: warmth, sensi-
tivity, abstractedness (creative, focused on internal self), and openness to
change.

– Self-Control contains rule consciousness, perfectionism, and opposite of
liveliness and abstractedness.

– Independence contains dominance, social boldness, vigilance, and openness
to change.

• Revised Competitiveness Index [Houston et al., 2002], providing 2 scores such as
competition enjoyment and social contentiousness, i.e., querulous behavior.

With this information we can find on account to which factor, users could benefit
from a biased feedback, and increase performance and learning. This information can be
used for a model that could predict the optimal feedback bias for each user.

Signal Processing. The same equipment and software as in the first experiment was
used: (i) 32 channel Brain Products LiveAmp (a wireless amplifier), (ii) OpenVibe for the
real-time signal processing which uses Butterworth temporal filter, CSP spatial filter
and classification (SVM, scaled between -1 and 1). As reminder, see paragraph 3.2.1.
Specifically in this study, not only SVM and CSP were trained on calibration data, but
also the selection of optimal frequency bands was performed for each subject, as in
[Blankertz et al., 2007].

Game controls. We used again the Lab Streaming Layer (LSL) to control a virtual
joystick that in turn controls the penguin. Meaning that the classifier output from
OpenVibe was streamed via LSL real-time and mapped onto the angle Tux would take,
see reminder 3.2.1.

Game modifications. We kept the same ski-course, a bobsleigh through which Tux
slides in constant speed. One row of fish at the extreme left or right could be difficult to
reach and thus insufficient to motivate participants with lower performances. Hence, we
added another row of reward (in form of squid). In other words, there is one row of fish
that is closer to the center (giving 1 point each as it is easier to reach) and a row of squid
that is placed at the extremities (giving 5 points each), see figure 4.4.
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Figure 4.4: Screen-shot of the Tux Racer game, customized for synchronous MI BCI. Here, the penguin already
passed the flag denoting the beginning of the trial. An additional row of reward (squid) was added to reduce
frustration, and increase motivation.

Mean re-centering. As mentioned earlier we want to account for the problems of EEG
non-stationarity by re-centering the classifier hyperplane from [Vidaurre et al., 2010].
We apply this method by calculating the mean or center c of the classifier output for
both classes in each run. If c 6= 0 we then move the hyperplane for the amount that
overpassed the 0 value or the old center, i.e., this value becomes the new center. For
instance, let’s say our classifier output is bounded between x ∈ [−1, 1]. When we move
the center for the mean c, we consequently move the maximum values (-1 and 1) as well.
In order to fit the mean without changing the limits, we perform a scaling depending on
two cases as follows. (i) if x < c then it is mapped with f(x) = (x− c)/(1 + c), or (ii) if
x > c then it is mapped with f(x) = (x− c)/(1− c), see simplified figure 4.5.
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Figure 4.5: Simplified example of re-centering when c > 0, and two cases of classifier output x1 < c, x2 > c.
Such re-centering includes a scaling factor in order to fit the classifier output within the same limits [-1, 1].

We perform re-centering of the hyperplane after each run during testing (without
the calibration), and calculate the mean from only the previous run. There are many
issues that could arrive during a run, for instance, a faulty electrode would impact
the classifier to choose one class throughout the whole run and would cause the
hyperplane to undergo a drastic movement for the wrong reason. Hence, we bounded
the mean c ∈ [−0.5, 0.5], i.e., if c > 0.5 then c = 0.5 or c < -0.5 then c = -0.5. This method is
implemented in every group, including the no_bias group. Note that this method
increases performance only if there are equal number of classes per run. After the
re-centering of the classifier output, we re-scale the maximum values between 0 and
1, and feed it to the bias function. The scaling is used in the first place to ease the
computation and mapping to the game, same as in chapter 3. Note that we perform such
scaling back and fourth, as the output of SVM are probabilities between 0 and 1, see 3.2.1.

Bias function. As for the positive and negative_bias groups, we used a beta cumulative
distribution function (beta CDF) that maps the classier output (which are probabilities)
to a biased classifier output. Beta probability density function (PDF) is a power function
of a variable x and its shape parameters a, b > 0:

f(x; a, b) = const · xa−1(1− x)b−1

The beta cumulative distribution function (CDF) is then:

Ix =
´ x

0 ta−1(1− t)b−tdt
const

where const is a normalization constant to assure the total probability is 1.
We list a few of Beta CDF properties:

• I0(a, b) = 0;
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• I1(a, b) = 1;

• Ix(a, 1) = xa;

• I0(1, b) = 1− (1− x)b;

• Ix(a, b) = 1− I1−x(b, a).

In practice, we chose this function because it permits us to control the slope with many
degrees of freedom using its two parameters, a and b. For instance, a influences the slope
near 0, while b influences the slope near 1, see figure 4.6. This way, these two parameters
enable us to assist users more when the classifier output has low performance (near 0),
and less when it has high performance (near 1).

Figure 4.6: Examples of beta CDF, with random variable x in the x-axis and the function Ix(a,b) in the y-axis,
when changing the shape parameters a and b.

As all beta CDF, the function starts in 0 and ends in 1, so we used a = b = 1 as a
linear (identity) function for the no_bias group. Hence, from the identity function we
started adding and subtracting values for our bias function, Meaning, a=(1 - k), and b=(1 +
k) represent the parameter values for positive bias group, while a=(1 + k) and b=(1 - k) for
the negative bias group, where k-values we call shifts. We tried out multiple shifts, and
empirically chose k = 0.33 as a best fit for our bias. see figure 4.7.
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Figure 4.7: Example for the right-hand class bias function: negative, positive and no_bias. We map the classifier
output (x-axis) to the biased output (y-axis), using different shift values (k). Left – the different colours represent
the various bias functions based on shifts kε[0.2, 0.5] for both positive and negative bias function; Right – bias
function for both negative and positive bias function with only one average shift value that we chose, k=0.33.

Note that beta CDF is symmetric for positive and negative bias, however it is not
symmetric below and above the middle value (0.5). For instance, in the case of positive
bias (again for right-hand class) when the classifier output is closer to 0, we wanted to
assist users more than when the output is closer to 1. For the left-hand class we simply
inverted the function to get the same effect.

Performance. To measure performance, we keep the same regular metrics online
(peak and average performance, standard deviation of classifier output, and distance
from maximal output values) and offline (classification accuracy of cross-validation,
using only testing data), as in our previous experiment. If a reminder for their definitions
is needed, see 3.2.1.

The best representative of performance is the online performance after the re-
centering method was applied. Thus for analysis, e.g. prediction models and correlations,
we use only centered performance.

Additionally, we are interested in the learning rate which is the slope of the linear
regression of online performance (centered) of runs within a session. We also measure
learning as a simple difference in performances between sessions, that measure we call
progress.

Prediction models. As we mentioned in our conceptual framework of adaptive
BCI (chapter 2), the adaptation should depend on the criteriawe wish to optimize,
i.e., would we prefer rather the user to be in a state of flow or the system to achieve
highest performance accuracy. In that sense, we can create a model that predicts
performances, learning rate, flow state and so on, on account on user personalities,
calibration performances, and initial states (flow and workload). Meaning, if for instance
we favour flow, we can predict the factors necessary to evoke such state, or if we wish to
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increase performance, we can build a prediction model that highlights factors necessary
to reach high performance, and so on.

Lets say our criteria is to maximize performance, so we wish to predict performances
Y n for n number of subjects, usingXn×p covariates for p prediction factors (user traits,
states, bias and so on).

We implement an Elastic-Net regression, which combines both Ridge (Tikhonov
regularization) and Lasso (Least Absolute Shrinkage and Selection Operator) regression,
as follows.

βnet = argmin
βεRp

(‖Y −Xβ‖2
2 + λ2‖β‖2

2 + λ1‖β‖1)

If λ1 = 0, then it is a Least Squares method with the ‖β‖2
2 penalty, called Ridge

regression, otherwise if λ2 = 0 it is a Least Squares method with the ‖β‖1 penalty
called the Lasso regression. In other words, ‖Y −Xβ‖2

2 is a l2 norm (i.e., Euclidean
distance), being

√
Σn
i=1(Y −Xβ)2

i ; and ‖β‖2
2 is an l2 norm, accounting for the number

of prediction factors p:
√
Σp
j=1β

2
j ; while the penalty for Lasso, ‖β‖1 is an l1 norm:

Σp
j=1 | βj |. With βnet calculated, it is used as a coefficient for the regression model.
Lasso is better suited for model complexity reduction, while Ridge is better suited for

correlated data. Elastic-net combines the strength of both. We use a parameter α to
wager between the two penalties or regressions, if α = 0 then it is Ridge, and if α = 1 it
is a Lasso regression. One use of α is for numerical stability; for example, the elastic net
with α = 1 − ξ, for some small ξ > 0 performs much like Lasso, but removes any
degeneracies and wild behavior caused by extreme correlations. The equation 4.3 then
takes the following form:

βnet = argmin
βεRp

(‖Y −Xβ‖2
2 + λ[(1-α)||β||22/2 + α||β||1])

Now the tuning parameter λ controls the overall strength of the penalty. Hence, to
optimize the prediction model, we need to find both the λ and α parameters. In order to
do so, we perform a Leave One Subject Out (LOSO) cross-validation using the R package
cva.glmnet, from glmnetutils1, which by default selects between 100 values of λ and 10
values of αε[0, 1] with an exponential step.

We performed a nested 2 cross-validation (LOSO) in order to have different sets for
training and testing during parameters search and avoid over-fitting. As we have n=30
subjects, we performed a n-fold cross validation in the outer loop and a (n-1)-fold cross
validation in the inner one. To explore the α parameter, in the inner loop we tested 10
default α values from R function cva.glmnet. This means that within the inner loop we
performed 10 α iterations x 29 LOSO. In each α iteration, we test a100 default λ values,
and we choose such λ leading to minimal prediction error. Once the minimal α and λ are
selected within the inner loop, in the outer loop we obtain 30 values of α and 30 values
of λ. We retrieve the corresponding error, being the mean error of all folds of the outer
loop (mean of 30 errors).

1https://cran.r-project.org/web/packages/glmnetUtils/vignettes/intro.html
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In order to asses the validity of this model, and verify if it has better prediction
power than chance, we compare it with randomized data which is run on the same
parameters 1000 times. We compare the mean error of our model to the error of random
data. If the error of our model is lower than the 5th percentile of the random one, we can
say it is better than chance, with a p<0.05. Finally, in order to get the final coefficients of
the regression, we run the model using the selected parameters α and λ on the whole
dataset.

4.4 Preliminary Results

4.4.1 Differences between groups according to performance and
learning.

Differences during calibration. There is no significant difference between groups
for both session 1 and 2 (using 1-way ANOVA, independent variable: session, dependent:
calibration performance), see figure 4.8. .

Figure 4.8: Density of participants’ scores of calibration between groups for session 1 (left), and session 2
(right). Green denotes no_bias group, purple positive and red negative_bias group.

Good/poor performers. Our hypothesis treats differently those who achieve low
versus high performance rates, or “good” and “poor” performers. We expect to see that
positive bias will assist while negative decrease performance and learning for “poor”
performers, and the inverse for the “good” ones. For that reason, we investigate the
groups by their performance (cross-validation) during calibration. We use the median
value of performance within a group for only the first session (without the second
session, to avoid including a learning effect) and thus separate the “good” from “poor”
performers. Note that a good performer is placed in such category according to its
group, but not according to all groups.

Differences in performance between sessions. When performing a 3-way ANOVA
(independent variables: group, session and performers, dependent variable: peak,
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average centered or regular performance). We did not find any significant difference
between groups (for all users together) when considering performance (online and
offline). We only observe a difference between performers (p<0.01) which is trivial, i.e.,
good performers during calibration are still good during testing when compared to poor
ones in their group. Although the difference in peak performance for 2 sessions is
not significant between groups, we can observe that the negative bias is somewhat
decreasing the performance between sessions, positive one is increasing for poor and
decreasing for good subject performances, while no_bias is somewhat stable for both,
see figure 4.9. We observe similar phenomena in average performance, as well. Note as
performance metric, we use the centered peak performance.

Figure 4.9: Peak performance, no significant difference between groups (only between performers). Red
denotes subjects with good performance, while blue subjects with poor performance.

Differences in learning rate between sessions. With 2-way ANOVA (independent
variable: session, dependent variable: learning rate); we found a significant difference in
learning rate (calculated with peak and average performance, for both regular and
centered), between groups and sessions (interaction: group and session, p<0.01, as well as
interaction: group, performer and session, p<0.01).

The learning rate decreased in the negative group, increased in positive group
and stayed the same in the no_bias group between sessions, see figure for learning
rate of peak performance centered 4.10. Similar results were observed with all other
performance metrics.
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Figure 4.10: Learning rate of centered peak performance (denoted as peak_perf_LR) changes between sessions
for each group.

This is not what we expected, we can observe that in the positive_bias group, the
learning curve is negative during both sessions, however it has a positive evolution
between session 1 and 2. On the other hand, within the negative_bias group, participants
have a positive learning curve during the first session, but it severely deteriorates during
the second session, and becomes negative. It seems the negative bias increased learning
in short-term, but decreased in long-term, while positive bias decreased in short-term
and increased in the long-term. As for the no_bias group, they slightly decreased but
remained within the positive learning curve between sessions.

Including performers. When we look closer at the significant interaction in
learning rate between performers, groups and sessions, we get a better explanation for
the above phenomena, see figure 4.11.
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Figure 4.11: Significant interaction of group, performer and session, for learning rate of peak centered
performance (denoted as peak_perf_LR).

Negative Bias.We can observe clearly that the negative bias influenced negatively
the poor performers between sessions (from a positive learning curve to a negative one),
while the good performers increased in their learning between sessions (from negative
learning to slightly positive). This can be explained that good performers do not have
much “space” for progress as they are already achieving high performances, while the
poor performers “try hard” locally (during first session) to make it work and progress.
However on the long run, in session 2, the poor performers might observe that their
performances do not improve (visually, as they are negatively biased) so they possibly
start to slowly abandon the task.

Positive Bias. It seems that with positive bias, good performers increased their
learning between session (from a negative learning curve to positive one), while the
poor performers did not benefit much from the positive bias. The good performers have
the most negative learning curve during the first session (when compared to all groups),
it can be explained that they give no effort as the task is too easy. Interestingly they
might expect the task to be even easier for the second session, but as it requires the
same amount of effort they have a positive learning curve. It seems as if subjects with
low calibration performance can not benefit from a positive bias.

No Bias. It seems that good performers had a positive learning curve during both
sessions, although it decreased from session one to session two. On the other hand the
poor performers had a negative learning curve in both sessions, although it increased
from session one to session two.

These results are not entirely consistent with our hypothesis nor between themselves.
This only shows that we should take a look not only at the performances, but also at the
users’ psychological traits in order to better understand their learning rate.
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4.4.2 Differences between groups according to psychological states
and traits.

Differences during calibration. There were no differences in EduFlow score during
calibration (1-way ANOVAs), which could indicate that the groups were balanced
considering their flow states at the beginning of both sessions, see figure 4.12.

Figure 4.12: Density of EduFlow scores during calibration for session 1 (left) and session 2 (right).

There were no differences in NASA-TLX score during calibration (1-way ANOVAs),
which could indicate that the groups were balanced considering their workload at the
beginning of both sessions. Also, when comparing personality traits between groups, we
do not find any significant difference between groups.

Differences between sessions. As reminder, EduFlow questionnaire provides 4
dimensions, that are, cognitive control, immersion, autotelism, and loss of self, and one
score that is the mean of all 4 dimensions, dented here as eduflow. On the other hand,
NASA-TLX has only one score of workload (denoted as nasa_score).

We acquired EduFlow questionnaires scores from testing phase (6 runs), or 1 value
per run per subject. When performing a 2-way ANOVA (independent variables: session
and group, dependent: one of EduFlow dimensions or the mean of all dimensions);
we find a significant difference between groups only in cognitive control, the first
dimension D1 of EduFlow score (p<0.05), see figure 4.13.
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Figure 4.13: Significant difference between groups concerning the D1 of EduFlow score (cognitive control).

As for other dimensions and the mean of EduFlow score there is no significant
difference. We have seen the same result in out first Tux experiment, the only significant
difference between groups is in cognitive control, as reminder see subsection 3.2.2.1.

We have not found any significant difference between groups in their workload,
when performing 2-way ANOVA (independent variables: session and group, dependent
variable: NASA-TLX score).

4.4.3 Correlations between psychological states, traits and online
performance.

For all correlations, the p-value was corrected for multiple comparisons with false
discovery rate (FDR) [Noble, 2009], and the threshold set for p-value is p<0.05. The
online performances we analyze are centered peak and average ones, denoted as
peak_perf_centered and avg_perf_centered.

Psychological States. Thanks to the amount of data acquired during runs, we were
able to find a precise relationship between flow, workload and performances, and
confirm some results from our previous experiment.

We found positive correlations between flow state, workload and performances , see
figure 4.14.
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Figure 4.14: Significant correlations of p<0.05 (corrected with FDR), with values referring to Pearson’s
coefficients. Blue represent positive, red negative correlations while gray are non-significant correlations.

There is a positive correlation between control, selfless, the mean of 4 dimensions
(eduflow) and online performances. However immersion was positively correlated with
flow in our previous experiment, here surprisingly it is not. It can be explained by the
fact the the bias was not adaptive for each user, i.e., each user had only one bias type
which did not particularly influence immersion, as in the previous experiment (reminder
see ??). On the other hand, there is no correlation between workload and performances.

Personality traits. The traits we explore are 5 global personality factors (from 16FP5
questionnaire), and 1 factor for competitiveness.

We have found significant correlations between 2 global traits (extroversion and
anxiety) and performance, see figure 4.15.

Figure 4.15: 2 (extroversion and anxiety) out of 5 global, correlate with online performance (peak, average
performance). Non-significant correlations are gray, while significant ones (p<0.05) are presented with the
Pearson’s coefficient. Blue represent positive, and red negative correlations.

We can observe that extroversion is positively correlated with online performance
(Pearson coefficient with average: 0.40, and with peak performance: 0.36); while anxiety
is negatively correlated with online performance (Pearson coefficient with average:
-0.42, and with peak performance: -0.39).
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4.4.4 Correlations between psychological states, traits and learn-
ing rate.

For all correlations, the p-value was corrected for multiple comparisons with false
discovery rate (FDR) [Noble, 2009], and the threshold set for p-value is p<0.05. For
the learning curve (evolution of performance over 6 runs or one session)we use
peak or average (centered) performance, which are denoted as peak_perf_centered_LR,
avg_perf_centered_LR.

Psychological States. We found interesting correlations between flow states, work-
load and the learning curve, see figure 4.16.

Figure 4.16: Correlations between states (flow and workload) and learning rates. Non-significant correlations
are in gray, while significant ones (p<0.05) are presented with the Pearson’s coefficient. Blue represent positive,
and red negative correlations.

EduFlow dimensions (control and loss of self) correlate negatively with learning,
especially the sense of cognitive control (coefficient with average: -0.20, and with peak:
-0.16). In contrast, workload correlates positively with learning (coefficient: 0.13).

Personality Traits. The traits we explore are 5 global personality factors (from 16FP5
questionnaire), and 1 factor for competitiveness (competition enjoyment).

We evaluated correlations with only centered (average and peak) performances, and
found no significant correlations between traits and learning rate.

4.4.5 Prediction Models

Prediction models can provide us with information about what type of personalities can
benefit from which biased feedback (positive, negative or none) to increase performance
and learning.

As we do not have a large enough population to validate all possible factors for the
prediction model, thus we choose to consider only:

• 5 global personality traits (each global score contains a linear combination of a
few out of 16 principal traits);

• 1 competitiveness index, that is, competition enjoyment, which is the principal
factor of competition (the second one relates to social conscientiousness);
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• calibration baseline, those are scores corresponding to the cross-validation of
classification accuracy during calibration for each session (2 values per person).

• Eduflow baseline, those are EduFlow scores from the calibration of each session (2
values per person).

• Nasa baseline, those are scores from NASA-TLX scores from the calibration
sessions (2 values per person).

• eduflow, nasa, and calibration reference are only the scores from the first session
used for predicting learning (to avoid the learning effect of the second calibration
scores).

4.4.5.1 Prediction of Online Performance.

To find the optimal bias for online (average and re-centered) performance per run,
depending on calibration performance, initial states and personality traits, we investigate
their interactions with bias within the prediction model. We could not select biased
performance as then any bias would produce an influence on biased performance, so
we keep only centered performance. The reason why we choose average over peak
performance per run as it seems more stable or robust metric for predictions.

To select significant factors for the prediction model, we use Elastic-net (see
reminder 4.3). Practically, the notation used in R package glmnet is, let bias and traits be
factors used to predict performance, bias can be positive, negative or none, and traits are
for instance 5 global traits, calibration scores etc. We use a notation such that (bias*traits)
answers how bias and traits separately predict performance, plus how their interaction
(bias : traits) predicts performance. The notation in R of bias*traits = bias + traits + bias : traits.

We perform 3 models, 1st is bias*traits; it selects each factor that significantly
predicts performance, along with their interaction (bias : traits); the 2nd is only bias :
traits; it selects only significant interactions with the bias, while the 3rd is also only a:b;
i.e., only interactions with the bias that significantly predict performance, but the traits
are divided in high-low groups, e.g. high-low anxiety.

We start by presenting the 1st model (bias*traits), see figure 4.17.
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Figure 4.17: First prediction model with selected factors for prediction and their interaction with bias factor.
The names of factors is on the left, and the coefficient of the regression is on the right.

Factors that predict performance. Firstmodel, contains separate factors a that
predict performance, from figure 4.17.

• calibration score positively relates to performance, e.g. an increased score predicts
increased performance.

• subjects who enjoy competitionmight be predictors of increased performance,
and vice versa.

• subjects who are extrovertedmight be predictors of increased performance, and
vice versa.

• subjects who are anxiousmight be predictors of low performances, and vice
versa.

• subjects who are in flow state during calibration might be predictors of high
performances, and vice versa.

• subjects who have high workload during calibration might be predictors of high
performances, and vice versa.

• subjects who have high self-Controlmight be predictors of low performances,
and vice versa.
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Optimal bias for performance. The Secondmodel, includes only interactions with
bias, see figure 4.18.

Figure 4.18: Second prediction model with only interaction between factors (traits, initial flow and workload
states, and calibration scores) with bias factor. The names of interactions is on the left, and the coefficient of
the regression is on the right.

We present the same results, but within a table to summarize the significant
interactions between bias and user traits, initial states and calibration performance
score, see table 4.1.

bias positive negative none
calibration scores + +
competitiveness +
extroversion +
anxiety - -

self-control + -
independence - +
workload +

Table 4.1: Positive (+) and negative (-) interactions between bias and factors selected by Elastic-net that predict
performance.
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Separating groups. When we separate users into groups of high-low global
personality traits, initial flow and workload states (g_eduflow_baseline and g_nasa_baseline),
and calibration performance (g_calib_baseline) using the median values (e.g. g_anxiety
contains anxiety_high scores above the median, and anxiety_low are scores below the
median), we produce a Thirdmodel, and we consider only interactions with bias, see
figure 4.19.

Figure 4.19: Prediction model for performance with interactions between factors separated in groups of
high-low and bias (on the left) and regression coefficients (on the right).

We represent the results within a table, for better visibility and understanding, see
table 4.2.

bias positive negative none
high calibration scores + +
low calibration scores - -

low flow state -
low competitiveness +

low anxiety +
low self-control +
low independence + -

low tough mindedness + +

Table 4.2: Positive (+) and negative (-) interactions between bias and factors selected by Elastic-net that predict
performance.

4.4.5.2 Prediction of Learning.

As we do not have enough data for predicting learning rate, we simply calculate a
progress rate, that is, the difference in online performance (average and re-centered)
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between 2 sessions. As we are predicting learning, we use only the calibration score from
first session (denoted as calib_reference) as the calibration score can change between
sessions due to learning effect.

The Elastic-net predictionmodel (bias*traits) selects 9 factors and 9 of their interactions
with bias to predict progress, see figure 4.20. Note that this model does not contain
eduflow_reference nor nasa_reference scores, because in that case the mean error of the
model is not better than chance.

Figure 4.20: Selected factors and their interaction with bias for prediction of progress (i.e., difference in
average centered performance between sessions). The names of factors is on the left, and the coefficient of the
regression is on the right.

Factors that predict learning (progress). From figure 4.20.

• negative bias positively relates to progress, e.g. negative bias might increase
learning.

• positive bias negatively relates to progress, e.g. positive bias might decrease
learning.
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• calibration reference positively relates to progress, e.g. an increased score predicts
increased progress.

• subjects who enjoy competitionmight be predictors of good progress, and vice
versa.

• subjects who are extrovertedmight be predictors of good progress, and vice
versa.

• subjects who are anxiousmight be predictors of good progress, and vice versa.

• subject who are though-minded (not open, not warm etc.), might be predictors
of low progress, and vice versa.

• subjects who are independentmight be predictors of good progress, and vice
versa.

• subjects who have high self-Controlmight be predictors of good progress, and
vice versa.

Optimal bias for learning. We present only the interactions with bias for predicting
progress, in a table 4.3.

bias positive negative none
calibration reference -
competitiveness - +
extroversion +

tough mindedness - -
self-control -
independence + -

Table 4.3: Positive (+) and negative (-) interactions between bias and factors selected by Elastic-net that predict
progress.

When separating groups into high-low, we get zero predictors for progress. Possibly
not enough data, and too many factors.

4.4.5.3 Model parameters and validity.

Prediction models of performance. For the First model, the selected value of
α = 0.9819333 (i.e., Elastic-net chose an almost Lasso regression), and selected
the penalty λ = 0.007027121, giving amean_error= 0.01015779. We perform a nested
cross-validation, i.e., select the alpha and lambda values for each person, see figure 4.21.
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Figure 4.21: For each subject we perform parameter selection, as follows. Upper figure: Mean-Squared Error of
10 α values (10 colours). Bottom figure: Such α is selected for which λ has minimum error; there are 2
proposed λ values (gray vertical lines) left gives minimum error, and the other one is more regularized (selects
less factors). Values presented above the bottom figure are the numbers of selected factors for each λ. 10
factors provide minimal error λ.

The mean error of both models are significantly lower than chance, see figure for the
first model 4.22.



CHAPTER 4. PREDICTING OPTIMAL FEEDBACK BIAS FOR PERFORMANCE AND LEARNING110

Figure 4.22: Histogram of mean errors. Mean squared error values (denoted as random_mses) are in x-axis. Our
model mean error (30 iterations, in red), and random mean error (1000 iterations) of which blue and green
colours represent different percentile values. The most left green is 0.1 percentile, and we can clearly observe
our model is significantly better than chance (p<0.001).

For the sake of readability, details and figures for the Second and Thirdmodel (only
interactions with bias), can be seen in the appendix 7.5 and 7.5, respectively.

Prediction Model of Learning. The model selected α = 1, being a Lasso regression
with penalty λ = 0.000509262, giving a mean error: 0.003405696, see figures in appendix
7.5. The validation of this model is performed by comparing the mean error with the
error of random data shuffled 1000 times. If our error is less than the 5th percentile
(p<0.05), of the random mean error, than we assume the model is better than chance, see
figure in appendix 7.5.

4.5 Discussion

In this chapter, we show that biased feedback directly influences the user’s:

• flow state, especially cognitive control: with positive bias, users feel significantly
more in control than with no bias, and the least in control with negative bias.

• learning; positive bias seems to decrease learning during the first session, but
increases in the second, however still remaining a (slightly) negative effect on
learning; in contrast, negative bias increases learning in the first session, but
severely decreases in the second (passing from positive to negative effect on
learning). Finally, no-bias seems to provide stable (positive) learning during both
sessions. However, there are still lacking evidence that concern the personality
traits that influenced learning. That is further discussed below.

Although there is no evidence (from ANOVA tests) of direct significant influence, biased
feedback seems to influence performance indirectly through flow. Moreover, flow state
also reveals an indirect influence of biased feedback on learning as well, as follows.
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• performance is related:

– positively with flow; positive correlations (with mean of all dimensions of
flow) indicate that the more one feels in control, immersed, without feeling
judged, self-critical or tense, and is in a pleasurable state, the higher the
performance levels. Considering that positive feedback increases flow, it
indirectly increases performance.

• learning is related:

– negatively with flow; negative correlations (with control and loss of self, 2
dimensions of flow) indicate that the more one feels in control, without
feeling judged or self-critical, the less one progresses. This could also
explain why positive biased feedback negatively influences learning, as it
significantly increases sense of control; the same as negative feedback
decreases control, which in turn increases learning.

This is indeed quite interesting but unexpected. Flow state represents a state of pleasure,
to be immersed in the present moment, thus performances in short term can benefit
from such a state. In contrast, on the long run, it is possible that in the flow state, there
is a lack of “minimal cognitive stress” necessary for learning, for progress. Ironically, the
flow state means that the person is too relaxed which is not beneficial for learning a MI
skill.

When we consider prediction models, the user profiles (e.g. personality traits and
calibration scores) directly predict or relate to:

• performance:

– positively; especially competition enjoyment, extroversion (i.e., being
warm, lively, socially bold etc.), and calibration scores from performance,
flow and workload; This means that an increase in calibration scores, and
traits (competition enjoyment and extroversion) predicts an increase in
performance;

– negatively; especially anxiety, self-control, and tough-mindedness; This
means that the more one is anxious, self-controlling and tough-minded, the
lower the performance.

• learning:

– positively; especially calibration (performance) score, competition en-
joyment, extroversion, anxiety, independence, self-control; this means
that those who tend to be more extroverted, anxious, independent, self
controlling and enjoy competition benefit from learning MI BCI.

– negatively; tough-mindedness.
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Interestingly, personality traits such as anxiety (being tense, vigilant, worried and
emotionally unstable) and self-control (being perfectionist, rule conscious, non-lively
and abstracted – withdrawn with internal ideas) are not useful for performance, but
show useful for learning. The only trait that is equally inefficient for performance and
learning together is tough-mindedness (being not warm, insensitive, not open to change
and not abstracted).

Increasing performance. In order to increase performance, we can answer – who
can benefit from a:

• positive bias:

– those who are self-controlling; who are dependent, i.e., lack social boldness,
dominance, vigilance and openness to change; and who have high calibration
performance scores; they can benefit from a positive bias to increase their
performance.

• negative bias:

– those who do not enjoy competition, who are extroverted (in general), who
are not anxious and those who have high calibration performance scores
can benefit from a negative bias to increase performance;

• zero bias:

– those who are competitive, who are independent, who have low self-control,
who are not tough-minded i.e., rather warm, sensitive, abstracted and open
to change, and those who have high scores in workload during calibration,
can benefit from no bias in order to increase their performance.

– In contrast, performance can decrease when using a bias that is not suited for some
personalities. So, we answer, who does not benefit from a:

• positive bias:

– those who are anxious, who are independent and those who have low
performance during calibration, they do not benefit from a positive bias;

• negative bias:

– those who are dependent, anxious do not benefit from a negative bias;

• zero bias:

– those who have low calibration performance scores, who are not in flow, and
those who are quite self-controlling do not benefit from no bias.
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Increasing learning. In the case we want to increase learning, we answer – who can
benefit from a:

• positive bias:

– those who are extroverted and independent;

• negative bias:

– those who enjoy competition;

• zero bias:

– none, or simply not enough evidence.

Those for which the learning decreases, or who do not benefit from a:

• positive bias:

– those who have increased calibration performance; who enjoy competition;
and those who are though-minded do not benefit from a positive bias;

• negative bias:

– those who are tough-minded, who are independent, and those who are
self-controlling do not benefit from a negative bias;

• zero bias:

– none, or simply not enough evidence.

For a clearer visualization of all predictors who benefit or not, what bias and for what
criteria (increase performance or learning), see figure 4.23.
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Figure 4.23: Clear table of optimal bias depending on criteria (performance or learning) and personality traits,
and calibration scores (performance, workload and flow).

Hypotheses validated? H1. and H2. concern users with low performance during
calibration, and who are at the same time typically anxious, non-competitive and
dependent. Positive (H1.) would increase, while negative bias (H2.) would decrease both
performance and learning.

H3. andH4. concern users with high performance during calibration, and who are at
the same time typically extroverted, competitive and independent. Positive (H3.) would
decrease, while negative bias (H4.) would increase both performance and learning.

Results show that:
A. Different rules apply whether it is for increasing performance or learning.
B. Different rules apply depending on the personality trait such as anxiety, extrover-

sion, competitiveness, and independence.
Hence, we must analyze the hypotheses one by one, for each of these factors and

predictors separately.

H1. Partially validated: – Positive bias does increase performance for persons
who are dependent. However it does not increase for those who are non-competitive



CHAPTER 4. PREDICTING OPTIMAL FEEDBACK BIAS FOR PERFORMANCE AND LEARNING115

nor anxious. On the contrary, positive bias decreases performance for those who
are anxious. Moreover it does not increase learning for neither dependent, anxious
nor non-competitive persons. On the contrary, learning increases for independent
personalities.

H2. Partially validated: – Negative bias does decrease performance for anxious
and dependent persons, However, it does not decrease for non-competitive nor those who
achieve low calibration performance scores. On the contrary, it increases performance
for those who do not enjoy competition. Moreover it does not decrease learning for
dependent, non-competitive subjects. On the contrary, it decreases for those who are
Independent.

H3. Partially validated: – Positive bias does decrease performance who are
independent. However it does not decrease for those who are competitive, extroverted
nor for those who have high calibration scores. On the contrary, it increases performance
for those with high calibration performance scores. Moreover, learning does decrease
with positive bias for those who have high performances during calibration, and who
enjoy competition. However it does not decrease for independent. On the contrary,
opposite from what we expected, learning increases with positive bias for independent
personality traits.

H4. Partially validated: – Negative bias does increase performance for those
with high performances during calibration, and those who are not anxious. However it
does not increase for independent users. Learning does increase for users who enjoy
competition, however it does not increase for those who are independent. On the
contrary, it decreases for those who are independent.

Summing interesting results. It seems as if thosewho are anxious, their performance
does not benefit from either positive nor negative biased feedback. Simply, a biased
feedback does not influence anxious persons. However, although seemingly a negative
trait (and negative for performance), some level of anxiousness seems to be necessary
for learning a MI skill.

It seems that low performance during calibration cannot be compensated with any
type of bias, their learning curve remains in the negative (see result 4.11). However,
clearly negative bias decreases even more their learning between sessions, while positive
and no-bias have a tendency of increasing their learning. But it is as if because of the low
calibration performance, they cannot surpass a limiting “threshold” and reach higher
performances during testing. Possibly for them, there needs to be another assistive
strategy as they might not lack control, confidence or useful personality traits to enable
learning but might be missing something else. It is possible they could benefit from a
training that provides better understanding of “how-to” produce or “what is” MI BCI.
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4.6 Conclusion

In this chapter we show that with a biased feedback we can directly influence one’s sense
of control as well as learning. The sense of control increases significantly with the degree
of positive bias. Such state along with other flow state dimensions (immersion, loss of self
and pleasure) positively relate to performance. Interestingly however, learning does not
benefit from a positive bias nor the flow state. Positive bias could effect a person to feel
highly in control, thus induce no effort or minimal anxiety necessary for progress. On
the contrary learning benefits from a negative feedback, but only during the first
session, as in the long run it can clearly demotivate users and severely decrease learning.

Furthermore, in this chapter we reveal who would benefit from which type of biased
feedback if any. We only partially validate our hypotheses. Partially because we did not
account that opposite solutions might apply depending on the optimization criteria, i.e.,
whether it is for increasing learning, performance or pleasurable states.

In sum, we show that depending on the personality trait different bias can be useful
be it for learning or for performance. Most interestingly, although still negative for
performance, anxiousness seems to be somewhat necessary for learning a MI skill. On
the other hand, those who have low calibration rates do not benefit from any provided
biased feedback. It could mean that they need other assistive training methods.

On a side note, these results are quite preliminary so they are not to be taken lightly
as de facto.

In the future, these predictors for optimal bias can provide prior information for an
adaptive framework that would adapt the bias automatically for each user (depending
on the criteria or goal). In the following chapter 5, we describe a simple adaptive method
that uses knowledge from the user profile and calibration scores so to select the optimal
bias for each user.



Chapter 5

Adapting MI Task with Priors
from User Profiles

5.1 Introduction

We presented a taxonomy for adaptive BCIs (in chapter 2) in which we promote the
benefits of adaptive tasks as a way to maximize a predefined criteria (performance,
learning, flow state and so on). So far, we have investigated the influence of different
task difficulties (feedback bias) on performance and learning. We have learned what
personality types could benefit from which type of influence (positive, negative or zero
feedback bias), see 4. In order to demonstrate that a BCI can indeed benefit from an
adaptive task, we created a simple data-driven adaptation model that can consider user
traits as priors.

In this short chapter, we provide a proof of concept of an adaptive model that selects
optimal bias to increase performance in MI BCI. We perform simulations on data from 30
subjects acquired from our previous MI experience, from chapter 4. Personality traits
and calibration performances are used as priors in the adaptive model.

In section 5.2, we provide a detailed explanation of our simple data-driven model
that selects optimal action (bias) based on online performance at each run. In section 5.3
we describe the dataset, the simulations we performed, and different model variants that
enable the validation of our simple model. In section 4.4 we provide our results and in
5.6 we present challenges and future work.

5.2 Adaptive Model

In this section we describe in detail our simple adaptive model that can take into
account user priors if any, and adapt the bias (action) accordingly within runs. Let us
assume that our optimization criteria is fixed and it is set to maximize performance. It
governs the adaptation process of our model that has 5 elements:
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• Actions ai, e.g. one of the feedback biases (positive, negative or none) the machine
can perform;

• Observations oj , e.g. the computed performance per run;

• Priors ki, that correspond to the relation of user traits and a given action (bias).
For instance, for an extroverted user, a negative bias is favourable to increase
performance;

• weight w(t) assigning preferences to observations that serves as an exploration-
exploitation parameter which increases in time t;

• α being the confidence about priors ki.

For each action ai(t), i = 1, ..m, there is a corresponding observation oi(t), at time
t=1,..,τ . Let us denote the mean of all observations till time t, µi(t) = 1

t

∑t
j=1 oi(j), for

each action ai(t). Such mean µi(t) is then weighted:

µ′i(t) = w(t)µi(t) + αki

where w(t) = t · γ and γ is a constant weight that assigns preferences to a certain
observation and is multiplied by time, i.e., the weight w(t) increases at each time step t;
while α is the degree of confidence for every prior ki known for each action; Note that α
is same for all priors ki. Then the probability for the next action ai(t+ 1) to be selected
is equal to:

p(a(t+ 1)) = σ(µ′(t))

where σ(·) is a softmax function that transforms the weighted mean vector of
observations µ′(t) = [µ′1(t), .., µ′m(t)]T into a vector of probabilities a(t + 1) =
p([µ′1(t), .., µ′m(t)]T ) which elements are all between (0,1) and sum up to 1. Note that
we denote vectors with bold letters.

The probabilities are not stored nor updated, only the mean is updated with each
new observation. As consequence, with each new observation, the probability of finding
the optimal action increases. If we ought to store the probabilities and update them with
newly observed and transformed data (also probabilities), than we would be using a log
likelihood matrix Lm×τ , Li(t) =l(p(µ′i(t) ; ai(t)), i.e., the probability to choose an
action given the probability of observations. Nevertheless, we choose to keep this
algorithm as simple and least computationally demanding as possible, hence we only
store the observations and update their means.

To select the first action before any observation has been made, i.e., the first
weighted mean value of observations is equal to the prior values µ′i(t) = 0 + αki,
and the first selected action directly depends on its given prior and its confidence,
p(ai(t)) = σ(αki), for t=1. Note that the action will not have equal probabilities to be
selected for t=1, as the prior is different for each action.

As this model is supposed to be simple and easy to understand, we also provide a less
mathematical explanation of the steps the model takes within the figure 5.1.



CHAPTER 5. ADAPTING MI TASK WITH PRIORS FROM USER PROFILES 119

Figure 5.1: Each action ai(t) causes an observation oi(t) at time t, here i=1,2,3 possible actions (3 different
feedback biases). After some time has passed t=1..,τ , each action creates a vector of t observations (the number
of observations increases with time). At each new observation we re-calculate the mean of observations caused
by one of these 3 actions. We then take into account the weights and priors that relate to each action,
and “assign” them to the new observation mean µ′

i(t). The next optimal action a(t+1) is simply chosen by
transforming µ′

i(t) into probabilities. This means that the next selected action would be the one that has the
highest probability p(µ′

i(t)).

5.3 Experimental Design

5.3.1 Dataset

We use data from 30 subjects, from which each performed 40 trials per run, 6 runs per
session, and 2 sessions, giving a total of 480 trials per subject. Half of the trials is for left,
and other half for right hand class motor imagery. 30 subjects were divided in 3 groups,
each contained one type of feedback bias. Hence, 10 subjects reacted to either positive,
negative or no bias. For more details on the protocol, see 4. We retrieve the average
online (re-centered) performance of each run, that represent reactions to one of the 3
bias types, for a reminder of centered online performance see 4.3.

5.3.2 Simulations

Virtual Users. We only have data that correspond to one bias type per user, i.e., one
person reacted to either positive, negative or no bias throughout 2 sessions. Hence, if we
want to prove the usefulness of a bias that adapts within runs we need to create virtual
users that contain data or reactions to 3 different biases. This was done by grouping real
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users into categories, for instance high-low calibration performance by high-low traits
(4 combinations for 1 couple). The high-low groups were created by calculating the
median value of trait for all subjects. We assured that in each category there was a user
that perceived each of the possible biases, so that we can exploit such data reactions.
We assume that users belonging to such group have similar reactions to a bias type,
according to results from chapter 4. Hence, we created virtual users that contain
multiple real users who reacted to all bias types in assumingly similar ways.

All the following combinations for 4-combination virtual users were possible:

• High-low calibration performance (first session) with high-low: tough-mindedness,
extroversion, and self-Control

• High-low extroversion and high-low: anxiety, and independence;

• High-low anxiety and high-low: tough-mindedness, independence, and self-
Control;

• High-low tough-mindedness and high-low: independence, and self-Control;

• High-low independence and high-low self-Control;

• High-low self-Control and high-low competition_enjoyment.

This means that one virtual user contains for example all the users who showed to be
highly extroverted and highly independent. Giving a total of 12 couples x 4 high-low
combinations, 48 possible virtual users who reacted to all bias types.

Model Input and Output. The model is fed with observations which are the average
centered performance computed on all trials of each run. For more details on centering
the classifier output, see 4.3 or [Vidaurre et al., 2010]. For each action, one observation
(performance) is randomly fetched from the virtual user dataset. Note, depending on the
virtual user dataset, for each action the number of observations can vary, i.e., the
number of observations created by an action can belong to at least one user, but there
can be more than one user.

The model produces an observation-driven action at every run, selecting one of the 3
possible biased feedback. The action selection depends directly on the observations and
the preferences about future observations w(t).

Model Priors. From our previous experiment, we have found what type of bias can
increase performance depending on the personality type and calibration performance
(see 4.5). We do not have new data to directly test these priors on, as they are predicted
using both sessions from experiment 4. To learn the priors and avoid over-fitting, we
train the priors on the first session and test them on the second session.

In order to facilitate the computation, note that we used a very simplistic approach
for calculating priors. Lets select one virtual user, for instance a low anxiety and high
independence user profile. For each action, we calculate the mean of performances for
the low anxiety trait, and then separately for high independence trait. This creates 2
mean values for each action (3x2 values). The average value of the 2 means is then used
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as a prior value for that virtual user, and for each action. Hence there are 3 priors, each
corresponding to one action. As consequence, the highest prior value will favour a
particular action at time t=1. Note that the prior values are fixed, and do not change over
time.

In the case in which the model does not contain any prior, the first observation o(t=1)
is calculated as a mean of all 1st session observations for all subjects (within all trait
groups). In this case, each action will have the same probability to be chosen at t=1 (no
priors).

For validation purposes, to test the influences of priors on model adaptation, we
created a model that we call the adaptive anti-prior model. For example, let say priors
ki favour actions ai such that: ki × ai = [0.5a1, 0.8a2, 0.6a3], this means that the
anti-prior k̂i would create such prior-action couples: k̂i × ai = [0.8a1, 0.5a2, 0.6a3].
That is, the prior that favoured one action most, will now favour the one it favoured
least, and vice versa.

Overall, we created 3 adaptive models: one with correct priors, wrong (anti) priors
and one without any priors.

Model Parameters. The model contains two parameters: w(t)=γt and α. The first
increases at each time step t,while the latter is constant for all priors and in time.
w(t) provides more and more confidence in time about the desired observation, and
consequently influences the choice of action related to such observation. Note that all
the following simulations were performed on 48 virtual users, for 100 number of runs,
and it was repeated 20 times.

In order to assess the effect of the parameters on the performance of the adaptive
model, we chose the anti-prior model. Indeed it demonstrates more easily the influence
they have on adaptation. If we chose an adaptive model with correct priors, it’s progress
would have been less obvious as it would have reached rather high performances from
the start.

To demonstrate the impact of w(t) on adaptation, we present an example of the
following values of γ = [0.25, 0.5, 1, 2, 4, 8] in an adaptive anti-prior model, see figure
5.2.
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Figure 5.2: Different values of w(t),with γ = [0.25, 0.5, 1, 2, 4, 8] are represented in different colours and
show their influence on performance across runs. The prior confidence α = 10 is fixed.

The stronger the confidence about an observation, the faster the convergence.
However if set as too strong (e.g. γ = 8, from figure 5.2) it might reach a plateau (local
maxima) because it would stop exploring possible actions. While the other weights have
higher exploration/lower exploitation levels (e.g. γ = 1) and take more time in the
beginning to reach high performances, but manage to surpass the high exploitation
weights.

To demonstrate the impact of confidence about priors on adaptation, we present
different values of α, see figure 5.3.
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Figure 5.3: Different values of α, presented in different colours, influence the degree of confidence about the
priors of the adaptive model. The observation weight γ = 2 is fixed.

Typically, the more the prior is correct, the model would benefit from a higher
confidence parameter. As it is an anti-prior adaptive model, i.e., wrong priors are given,
it means that the less confident the model is about the priors the faster it converges
(α = 0.1 in red from figure 5.3). Note that if the confidence about priors is set too high,
(limit use case e.g. 1000), then the model would practically not adapt over time, and
alway pick the action believed to be the best.

5.3.3 Evaluation Models

We wish to investigate the usefulness of our model that automatically provides an
adaptive bias selection within runs based on user traits. To do so, we compare the
following adaptive models:

1. Adaptive model basic (data-driven); it is the model we presented, but without
priors;

2. Adaptive model basic with priors about user traits and actions;

3. Adaptive model basic with wrong priors about user traits and actions;

To show the benefits of an adaptive (data-driven) model versus non-adaptive models, we
create and compare non-adaptive (not data-driven) models:

1. Fixed negative bias model; this model will always choose a negative bias, for each
user;
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2. Fixed positive bias model; this model will always choose a positive bias, for each
user;

3. Fixed no_bias model; this model will always choose a zero bias, for each user;

4. Fixed bias; user-centered (with prior) model, this model is not data driven (i.e., it
does not take into account user reactions to the bias) but uses priors from each
user, i.e., it selects such bias that has shown to increase performance for that
particular user;

5. Fixed bias with wrong (anti) prior model; this model selects such bias that has
shown to influence negatively that user; it uses the wrong priors intentionally.

As a “control” model, we also created a:

1. Randommodel; this model does not use any prior and it picks observations
randomly at every run.

Evaluation Performance. To evaluate the models, we simply compare the perfor-
mances between each model after 20 repetitions for all 48 virtual users and a fixed
number of runs. We then perform a 1-way ANOVA (independent variable: model,
dependent variable: performance). with Tukey post-hoc and false discovery rate
correction for multiple comparisons [Noble, 2009]. We set the significance threshold at
(p < 0.05).

Furthermore, we also depict the convergence over time of the various models. Note
that from the dataset we selected average centered online performances which are quite
pessimistic but less variable, when compared to peak performances for instance.

5.4 Results

We compare all the presented models with each-other, and show their significant
differences. Note that the observations are drawn with repetition from the 2nd session
dataset (testing dataset), because the 1st session served as training for the priors. Each
box-plot represents 20 repetitions for 48 virtual users and 6 runs. As with the original
dataset, we consider that 6 runs compose 1 session and we assess the performance of the
model on the first virtual session (1-6 runs), see figure 5.4, for the 3rdvirtual session
(13-18 runs), see figure 5.5, and 6th session (31-36 runs), see figure 5.6. Regarding the
simulations from 5.3.2, we empirically chose the parameter values of γ = 2, and α = 10
for our simulations.



CHAPTER 5. ADAPTING MI TASK WITH PRIORS FROM USER PROFILES 125

Figure 5.4: Comparison of all models after the 1st (testing) session, i.e., runs 1-to-6, the differences between
the pairs of models are significant unless indicated otherwise with “ns”. The models are arranged by their
median performance, in an ascending order from left to right.

After one session, the worst model shows to be the fixed model with anti-priors,
while interestingly the negative fixed model performs the second best after models with
priors (adaptive or fixed). The basic adaptive model is in the 4th place.

Figure 5.5: Comparison of all models after 3 (testing) sessions, i.e., runs 13-to-18, the differences between the
pairs of models are significant unless indicated otherwise with “ns”. The models are arranged by their median
performance, in an ascending order from left to right.

In the 3rd session, the worst model shows to be the fixed model with anti-priors,
while the adaptive models overcome the fixed ones, the basic adaptive model reached
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the second best place after the adaptive model with priors. The fixed model with priors
falls down to the 3rd, while the fixed negative model down to the 5th place.

Figure 5.6: Comparison of all models after 6 (testing) sessions, i.e., runs 31-to-36, the differences between the
pairs of models are significant unless indicated otherwise with “ns”. The models are arranged by their median
performance, in an ascending order from left to right.

In the 6th session, the adaptive models (with, without and anti priors) perform best,
surpassing fixed model with priors and fixed negative models.

For a better visualization of the evolution of each model (for all virtual users, and 20
repetitions for each run), see figure 5.7.



CHAPTER 5. ADAPTING MI TASK WITH PRIORS FROM USER PROFILES 127

Figure 5.7: Evolution of performance for each model within 40 runs. Each colour represents a different model.

We can see that after about 10 (±3) runs, the adaptive models reach higher
performances than the fixed ones. The model reaching highest performances is the
adaptive model with priors. It also has a high start, given the right priors, in contrast the
anti-prior model which starts with lowest performances because of the wrong priors.

We summarize the performances between models for sessions: 1, 3, and 6, in table 5.1.

Table 5.1: Mean (SD) of the average performance centered between models for different simulated sessions.
N=960 (48 virtual subjects, 20 repetitions).

Session 1 Session 3 Session 6
ModelAntiPriors 0.58 (0.07) 0.58 (0.07) 0.58 (0.07)

ModelFixed-noadapt 0.60 (0.09) 0.60 (0.08) 0.60 (0.09)
ModelFixed-positive 0.61 (0.06) 0.61 (0.06) 0.61 (0.06)
ModelRandom 0.62 (0.06) 0.62 (0.06) 0.62 (0.06)

ModelFixed-negative 0.64 (0.09) 0.64 (0.10) 0.64 (0.10)
ModelPriors 0.65 (0.09) 0.65 (0.09) 0.65 (0.09)

ModelAdaptive+AntiPriors 0.61 (0.06) 0.65 (0.07) 0.67 (0.07)
ModelAdaptive 0.63 (0.06) 0.67 (0.07) 0.68 (0.07)

ModelAdaptive+Priors 0.65 (0.07) 0.67 (0.08) 0.68 (0.07)

It is also interesting to observe the evolution of performance for each virtual user,
see examples of a user with high independence and high extroversion in figure 5.8, with
high independence and low extroversion in figure 5.9, and with low independence and
high anxiety in figure 5.10. In a way these representations can also serve as a validation
approach for our predictions about optimal bias for each user from chapter 4.
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Figure 5.8: Evolution of performance within runs for a virtual user that is highly independent and highly
extroverted, denoted as g_independence-g_extraversion::high-high (g_ stands for group). For this user, negative
fixed model performs best.

Figure 5.9: Evolution of performance within runs for a virtual user that is highly independent and not-
extroverted, denoted as g_independence-g_extraversion::high-low. For this user, no_bias fixed model performs
best.
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Figure 5.10: Evolution of performance within runs for a virtual user that is highly independent and
not-extroverted, denoted as g_independence-g_anxiety::low-high. For this user, positive fixed model along with
the fixed model with priors perform best.

5.5 Discussion

From table 5.1, the adaptive model with priors performs the best on average. Also,
locally, if the model has priors about the user traits, even if it is not adaptive, it can be
very useful for increasing performance. That means that thanks to our prediction
models from chapter 4, we can use the knowledge about the user traits to locally
increase performance with significant rates.

Model convergence on average. Regarding the evolution of performances within
runs, of all virtual users on average (figure 5.7), the fixed models do not converge, and
after about 10 runs the adaptive models show evident superiority. If the model is
adaptive (data-driven) and has correct priors, already after about 3 runs it outperforms
all other models on average.

Virtual user models. Regarding the evolution of performances within runs per
virtual user, we can observe and somewhat confirm the usefulness of having priors, i.e.,
knowledge about what type of feedback bias is useful for what type of personality trait. On
part with results from chapter 4.5, we confirmed that those who are highly independent
and extroverted benefit from a negative bias, those who are independent but not
extroverted benefit from a no_bias feedback, and those who are dependent and highly
anxious benefit from positive bias. Interestingly when there are opposed groups within
one virtual user (high and low), the adaptive model anti-prior has similar success as the
adaptive (basic) model, i.e., it reaches quite high performances. When a virtual user is a
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combination of two very different traits, i.e., traits for which opposite biases would be
preferable, the fixed model with priors does not perform best. We could say that is the
case for high-independence and low-extroversion traits combination, see figure 5.9. In
such situations, i.e., when it is difficult to predict the user performance, adaptive models
would be even more useful because they would be able to automatically find the best
action for any user profile.

5.6 Conclusion

In this short chapter, we introduce a simple adaptive (data-driven) model that can
incorporate user profile as priors to guide its adaptation in a MI (binary class) task. It is
computationally very easy to re-create and understand.

Notably, this model produces an action (negative, positive or no bias) that directly
depends on its observations and the preferences over future observations. Such
preferences govern the exploration-exploitation ratio. When equipped with priors, even
with wrong priors, it manages to automatically increase performance after a few runs.

We have presented the benefits of data-driven models when compared to non-
adaptive (fixed) models that cannot change actions within runs. Indeed, especially for
more than one session, the necessity of an adaptive task is evident for performance
maximization (to reach global maxima). The fixed models tend to stay in local maxima,
and their success depends purely on the correctness of their priors.

We have also confirmed the usefulness of having priors about user traits. For
instance, within one session (6 runs of about 200 seconds trials per run) for a particular
user trait, a fixed model with correct bias can be the optimal solution even in the long
run. However, if the certainty about the priors is low, then it is much safer to use an
adaptive model that can maximize performance even with wrong priors.

At this point, the major drawback of this model is the assumption that, if in the
same trait category, multiple users behave the same way when presented with a bias.
We randomly fetch data from each virtual user, that can in fact be multiple users.
But considering that we did not have any data available, i.e., only one bias type was
presented for one user, this was the only possible solution we could think of to simulate
user reactions to all 3 biases. The major limitation is that we do not actually have real
user reactions, their evolution in time to a changeable bias. Hence, to truly validate the
adaptive model, we should to test it online. We could also compare it with state-of-the
art adaptive models. Moreover, we could try to configure this model to adapt other types
of machine actions, and possibly in other BCI paradigms. Additionally we could also
envision combining priors over various optimization criteria i.e., performance and state
of flow.

Our model might be suboptimal if the user states change over time, e.g. decrease in
attention level. Indeed due to the constant increase of observation weight w(t) over time,
the model will eventually stop exploring any new possible action. In other words, it does
not account for a potential decrease in user performance over time. In that case, we
would need a more generic and flexible model. In the next chapter, we introduce a
Bayesian (Active) Inference approach that could account for such changeability over
time.



Chapter 6

Adapting P300-Speller task
with Active Inference

Philosophical Thought Active Inference relies on the fact that we can never know
the true nature of the world but have only approximate knowledge based on our sensory
evidence. One only has a mental representation of the world that is being updated thanks
to new experiences and sensory observations. In other words, the reality is a mental
construct represented through only existing means, which are, somatosensory events.

This is directly linked to Kant [Kant, 1998], and a philosophical current called
transcendental idealism. Kant stated that we can know only the phenomena of the
objects (world), i.e., what appears to our senses and pure reason1. Such phenomena we
than transform according to the predefined structures called categories (from which
space and time characterize the senses, while the others, such as quality, quantity,
relation, modality, and their subcategories belong to pure reason). These universal (i.e.,
applied to everyone) categories allow processing of data, which we conceive as our
experience of the world. What that world is really about, we can never know; in its
essence, it is noumenon (unknowable).

“...all objects of a possible experience are nothing but phenomena, that are, mere
representations ... and have no self-subsistent existence apart from human thought.”
(page 307 from [Kant, 1998]).

6.1 Introduction

We investigated various influences the task could have on the users, such as sound and
the feedback bias. We show that depending on the goal, whether it is a MI training, or

1there is also practical reason that is linked to morality
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P300- speller, different optimization criteriamay apply from maximizing flow state,
performance to learning rate (chapter 2). We proposed prediction models to anticipate
which action (biased feedback) is best for certain user profiles, depending on the criteria
(chapter 4). Therefore, we created a simple adaptive model that can account for the
various user profiles, and adapt its action (bias) within runs (chapter 5). It does so by
observing user reactions to its actions, and by following a predefined criteria, i.e., to
maximize performance. This model is not realistic as it presumes the performances are
stable in time.

What if we can endow the machine with such a model that can account for the
changeable user states during a BCI task. A model that is generic enough, but with only a
few key parameters, such as: the goal, user states, and machine influence (actions); can it
enable the machine to perform adaptation automatically to each user? In this chapter
we explore one such generic computational model.

Going adaptive is a major challenge for the field of Brain-Computer Interface (BCI) that
struggles to produce efficient and robust applications. This entails a machine that
optimally articulates inference about the user’s hidden states from measured brain
signals by means of controlling the stimulus presentation at each trial. Adaptation can
operate over several dimensions which calls for a generic and flexible framework to
implement such a dynamic behavior. Therefore, we appeal to what is arguably the most
recent and comprehensive computational approach to brain functions: the Active
Inference (AI) framework. It entails an explicit (probabilistic) model of the world the
AI agent is interacting with, here the user involved in a P300-spelling task. In our
context, this corresponds to a discrete input-output state-space model establishing the
link between the machine’s (i) observations – a P300 or Error Potential for instance,
(ii) representations – of the user intentions to spell or pause, and (iii) actions – to
flash, spell or switch-off the application. We show how this one model endowed with
Active (Bayesian) Inference enables to implement optimal (dynamic) stopping but also
optimal flashing (i.e. active sampling), automated error correction, and switching off
when the user does not look at the screen anymore. Importantly, this framework
enables the machine to automatically decide between all its possible actions. For
instance, in the case of correction spelling, the machine evaluates the optimal action
whether to spell the next probable letter or to continue flashing to accumulate further
evidence. We demonstrate Active Inference for BCI through simulations of a P300-speller
task using real data from 18 subjects. Results demonstrate the ability of AI to yield
a significant increase in bit rate over state-of-the-art approaches. This approach
represents a promising solution for creating a unifying framework for BCI applications
while enabling co-adaptation.

6.1.1 P300 Speller

One of the most commonly used non-invasive BCI for communication is the visual
P300-speller [Farwell and Donchin, 1988]. It relies on event-related potentials (ERPs)
notably including the P300 – an EEG positive deflection occurring around 300ms after a
rare and relevant event. This event can be the display or highlighting of an expected



CHAPTER 6. ADAPTING P300-SPELLER TASK WITH ACTIVE INFERENCE 133

item (e.g. a letter, a number or a picture). With a P300-speller, the subjects are typically
presented with a 6x6 grid of characters, where a set of items within a row or a column
are flashed in a pseudo-random order (the Row-Column – RC paradigm). To select a
letter, during the flashing, the users need to focus their visual attention on the item they
wish to spell. Once the target item is flashed, the brain reacts with a P300, enabling
the machine to detect the particular ERP and spell the desired character. Online, the
machine aims at inferring which stimulus corresponds to the targeted item. In order to
gain confidence about the target letter, the machine flashes the items in repetition.
Intuitively, one would believe that the longer the machine flashes, the higher the
confidence. However, this is not necessarily the case, as the user’s vigilance may drop
over time which affects the EEG signals and hence classification accuracy. For more
details see [Sellers et al., 2006].

6.1.1.1 Related Work

Although the P300-speller has a relatively high Information Transfer Rate (ITR) compared
to other BCIs, it remains a fairly slow and cumbersomemean of communication due to the
necessity of trial repetition for a fairly correct P300 classification [Blankertz et al., 2004].
In our context, it is interesting to consider such improvements as belonging to either
one or the other of the two following categories:

(1) Static methods, that implement static design enhancements to increase the
signal-to-noise ratio (SNR), e.g. by (i) preventing perceptual errors such as the "repeti-
tion blindness" – when flashing the same item consecutively [Schendan et al., 1997,
Jin et al., 2012], or the "near-target effect" – when flashing within a close range
both temporally and spatially from the target letter [Cinel et al., 2004], varying the
inter-stimulus intervals or flashing patterns [Sellers et al., 2006]; or (ii) motivating
users with more engaging playful environments [Qu et al., 2018], captivating stimuli
(smileys [Jin et al., 2012] or real faces [Jin et al., 2012, Kaufmann et al., 2011]), intelli-
gent (but not data-dependent) order of stimuli apparition [Verhoeven et al., 2015,
Mainsah et al., 2017]; inter-symbol distance, symbol size, contrasted foreground and
backgroundcolours [Salvaris and Sepulveda, 2009] ormonetary rewards [Kleih et al., 2010].

(2) Dynamic methods, that endow the machine with flexibility or adaptive behavior
such that it will adjust some of its design parameters based on the online acquired
signals and the states of the ongoing interaction. These usually include probabilistic or
Bayesian approaches to update the machine’s belief in real time and optimize the
resulting decisions. For instance, optimal (or dynamic) stopping both reduces the
number of flashes and increases accuracy by using the brain response to each flash
to update both its belief about the target letter and its confidence about this belief
[Verschore et al., 2012, Thomas et al., 2014, Mattout et al., 2015].

In [Mattout et al., 2015], the outcome of a probabilistic classifier is updated online,
permitting the machine to stop and spell a letter once it attains a predefined confidence
level. Here the decision speed (number of flashes) depends on the consistency and
reliability of accumulated evidence. Another example is the effort to get rid of individ-
ual calibration, by implementing unsupervised classification [Woehrle et al., 2015],
or by adopting a transfer learning strategy based on data from previous subjects
[Kindermans et al., 2012, Gayraud et al., 2017]. To go further in assisting the user to spell
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words, some authors implement language models together with the optimal stopping to
reach higher ITR [Kindermans et al., 2014b]. Automatic spelling corrections using Error
Potentials (ErrPs) have also been used [Margaux et al., 2012, Cruz et al., 2018]. It should
be noted that the subject directly influences the level of improvement that can be
achieved. Indeed, when users reach higher accuracy thanks to adaptive machines, they
become more motivated, which in turn yield higher SNRs hence an even higher accuracy.
A virtuous cycle that has been evidenced online when implementing optimal stopping
[Mattout et al., 2015]. And most recent advances in adaptive P300 spellers go beyond
optimal stopping by also incorporating optimal flashing, a form of active sampling that
consists in flashing the group of letters that should provide most information to reveal
the target [Kalika et al., 2017].

Considering (1), some "static methods" could apply to every subject (such as
prevention of near target or repetition blindness effects), but other solutions, such as
different colours, letter size, inter-stimulus intervals, or 3D environments seem to be
non-transferable across all subjects. Typically, those are specific to a particular BCI
scenario, person or even time period. Furthermore, these methods are not sensitive to
changes in user states (they do not adapt), for instance they could not account for user
fatigue. We believe that these static solutions can increase the initial usability, but not a
long-lasting one. We find it is of essential importance to merge the knowledge used for
static design methods and apply it in a dynamic way.

Considering (2), the "dynamic methods" – the few existing adaptive developments
have been designed independently of each other, namely, adaptive flashing and adaptive
spelling. It appears difficult to combine such adaptive actions in one computational
framework, as one needs to find a way for the machine to optimally arbitrate, online,
between alternative actions. For instance, in adaptive stimulus presentation as proposed
by [Kalika et al., 2017], the authors used a probabilistic model to implement optimal
stopping with a fixed decision threshold, and relative entropy with a greedy search
algorithm to select the next sequence of flashes. However, such a solution is not generic
in the sense that the action space remains limited and specific to the particular phase of
the ongoing interaction (e.g. flashing, spelling or correcting). As a consequence, right
after spelling an item for instance, the machine cannot choose between validating this
item or flashing again to acquire more evidence, or immediately spelling another
item instead. Furthermore, as such a decision relies on the ability to detect an Error
Potential (ErrP), one has to be able to evaluate the confidence of ErrP detection within a
single trial, which is a very noisy step. As a matter of fact, ErrP classifiers have to
be used online with precaution. This is because in case of low specificity (i.e. high
risk of labeling a correct letter as an error), the correct letters can be replaced with
another (wrong) one. This phenomenon has shown to be quite frustrating for users
[Margaux et al., 2012]. Some authors even recommend not to use such corrections,
stating that word auto-completions using contextual and language models suffice
[Mainsah et al., 2015]. Indeed, for such an automated correction to be effective, an
adaptive framework is needed to optimally weight all possible alternative decisions,
based on their relative predictions and confidence. In particular, this requires a unifying
framework in which the various relevant quantities can be negotiated in a common
currency. For instance, additional information need to be traded with the time needed to
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get that information and, as well, with the expected reward associated with error-free
communication.

6.2 A Unifying Framework

The required unifying framework puts an emphasis on the various decisions and actions
the machine may take. In that sense, it extends the adaptive approaches that implement
learning abilities only (e.g. adaptation of feature extraction or classification parameters
over time using machine learning techniques) with active sampling which provides
actions in a way that also influences the user and optimizes the interaction. We have
previously advocated for these two complementary aspects of co-adaptation in BCI and
proposed a unifying conceptual framework in Chapter 2 [Mladenović et al., 2017b].

In this chapter, we propose and illustrate an instantiation of the conceptual
framework (taxonomy of adaptive BCIs), based on a recent computational model
developed in theoretical neuroscience and called Active Inference [Friston, 2010].
It resides on the mentioned perception-action cycles that couple the agent to its
environment. Note that in our context, the environment of interest for the machine or
(artificial) Active Inference agent is the BCI user. Active Inference rests on a generic
Bayesian approach that we show could incorporate various instances of adaptive BCI
techniques into one flexible framework. It involves a formal generative model, in
which the dependencies between observations, user states (intentions) and actions are
specified given a particular context (here a P300-speller BCI). Based on this probabilistic
model and an optimization criterion referred to as the Free Energy Principle (FEP), the
machine infers the user’s intentions (what letter to spell, if none then pause) from EEG
observations and computes optimal actions (to flash or spell). Applying Active Inference
in a P300 speller context thus naturally endows the interaction with optimal flashing and
spelling. Importantly, Active Inference turns an optimization problem (action selection)
into a Bayesian inference one where preferences or goals are specified in the form of
prior expectations. Desired outcomes are encoded in terms of quantitative priors.

We apply Active Inference on a simulated P300-speller, using real data from 18
subjects. Moreover, to demonstrate the flexibility of this framework, we implement
various adaptive features such as automated error correction or the detection of a
state where the user is looking away from the screen. As these features correspond to
alternative (hidden) states that the machine’s model of the user considers plausible, and
since the Active Inference framework rests on a single optimization criterion (the FEP),
the machine will automatically arbitrate between all possible actions based on both
in-build priors and incoming observations. Note that in this first demonstration of
Active Inference for BCI, we consider a simplified situation where observations are not
raw EEG data but appropriately pre-processed, extracted and classified features. In other
words, the Active Inference framework is here plugged-in on top of a classical feature
extraction and (probabilistic) classifier for P300-based BCI.

In the following sections, we first summarize the general principle of Active Inference
in 6.3, emphasizing its genericity and flexibility. We then describe in 6.4 how Active
Inference can be applied in the context of P300-speller BCI. We then introduce in 6.5 the
real data and features we used to evaluate this new approach by simulating online
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spelling. The following section 6.6 presents the obtained results, comparing Active
Inference with state-of-the art algorithms. Finally, sections 6.7 and 6.8 comprise our final
words about this method and future work.

6.3 Active Inference: AUnifying Computational Frame-
work

The Active Inference framework has been proposed as a biologically plausible compu-
tational model of the brain [Friston, 2010]. Here we build on the analogy between
the brain and any adaptive system. We endow the machine with Active Inference in
order to enable it to flexibly interact with the user in a P300-based BCI. In 6.3.1, we
introduce Active Inference as proposed in computational neuroscience, and draw the
brain-machine analogy.

6.3.1 Active Inference: Model of the Brain

By the end of the last century, neuroscientists ceased to perceive the brain as a
passive organ which simply processes stimuli, but as an active organ that constantly
updates a (probabilistic) model of its environment and predicts future sensory inputs
[Rao and Ballard, 1999]. This view has given rise to the so-called Bayesian brain hypoth-
esis whereby the brain is thought to implement (approximate) Bayesian inference. A
compelling computational framework that incorporates the Bayesian brain hypothesis
aiming at explaining perception, learning and decision making in biologically plausible
terms. In this scope, the most advanced General Framework both computationally
and theoretically is Active Inference [Friston, 2010]. It extends approximate Bayesian
Inference by tightly coupling perception with action (unifying cause and effect).

In other words, as living beings cannot directly perceive the true states of the world
(the cause), they need to infer them from noisy observations (the effect). Such inference
is achieved by repeatedly performing perception-action cycles. They constantly
anticipate the true states and represent them within a generative model of sensory
inputs. This way they are implicit Bayesian modelers of their environment [Friston, 2010]. In
order to exchange with an ever-changing environment and maintain homeostasis,
biological (adaptive) systems restrict themselves to a limited number of states. In other
words they are resisting the natural tendency of dispersion (resisting the 2ˆnd law
of thermodynamics) [Friston, 2010]. This mechanism can be seen as minimizing the
entropy (disorder or unpredictability) of the distribution over the outcomes they
experience (observations) relative to a desired outcome (e.g. homeostasis).

6.3.1.1 A Brain - Machine Analogy

In BCI, the observations (EEG) are often very noisy and contain high variability for which
we often do not know the cause, and thus cannot control its outcomes to our favor. We
wish to endow the machine with Active Inference, in order to model the causes of
observations, to better anticipate and favor certain outcomes. This is indeed what we are
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looking for in BCI systems. As such, let us draw a parallel between (i) the brain as an
adaptive system, described by Active Inference, which:

• accumulates observations to update its internal model of the environment,

• optimizes its interactions through making inference about the environment,

• optimizes its interactions through acting upon the environment;

and (ii) the machinewhich should incorporate the same behavior to achieve a co-
adaptive BCI (knowing that the brain constantly adapts, changes), namely:

• accumulate observations – EEG data – to update its internal model of the user,
e.g. the model containing probabilities of user’s intentions, states, reactions to
machine’s actions etc.

• optimize its interactions through making inference about the user, i.e., with the
updated user model, updated prediction for a certain user state e.g. fatigue or
intention to spell or pause

• optimize its interactions through acting on the user, i.e., with the updated user
model, reinforce predictions or reduce prediction error with optimal action
(feedback or stimuli).

Both the brain and the machine behave in order to best anticipate future outcomes by
minimizing entropy (minimizing chaos, or maximizing information) relative to a desired
outcome. In the following, we expose (a) the generic discrete state space model used by
the Active Inference framework to model sequential learning and decision making by
the brain, and (b) the objective function (relative entropy) it minimizes – free energy.

6.3.1.2 Generative Bayesian model and Free Energy

Sensory evidence (observation) is evaluated and updated given a generative model
m under Markovian assumptions in order to reach optimal predictions. The model
contains priors over future outcomes that encode one’s goals or preferences. Such priors
influence action selection, as depicted in Figure 6.1. Note thatm embeds the generative
model assumptions specific to each agent.

The generative modelm is a joint probability over hidden states S, control states U,
observationsO and model parameters:

S – finite set of hidden states: Hidden states are internal representations a living
being (or a machine in our case) can have about the hidden causes of their sensations
(observations). For instance, they can be the letter on the user’s mind that cause a
P300 EEG deflection (machine’s observation) after the presentation of flashing letters
(machine’s action).

S = s(1), s(2), .., s(n), with |S| = n;
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Figure 6.1: Illustrates Markov model of hidden states S, control states U and observationsO. Actions are
sampled from the posterior probability distribution over control states, which is parametrized by the precision
parameter γ and preferences over future outcomes C. The latter assigns high values to desired final outcomes
or states and penalizes undesired ones.

Let smap each trial t onto one element from finite set S;
s(t) = st ∈ S, ∀t = 1, ..., T

where n represents the number of possible states, or cardinality of S at every trial t; T is
the final trial, and t the current one. This means that only one state out of n possible
ones can take place at a time or trial t.

U – finite set of control states or actions: In active inference, actions are sampled
from beliefs about control and, thus need to be inferred from observations. However for
simplicity, in most implementations of active inference, realized actions are assumed to
be known by the agent. The agent entertains posterior beliefs about the control of
(hidden) state transitions. In the previous example, a possible action would be the
flashing of a specific letter.

U = u(1), u(2), .., u(r), with |U| = r;

Let umap each trial t onto one element from finite set U ;
u(t) = ut ∈ U, ∀t = 1, ..., T

where r represents the number of possible states, or cardinality of U at every trial t.
Only one action out of r possible ones can take place at a time or trial t.
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O – finite set of observations or outcomes: Observations are anything an agent can
directly sense. In our example, taking the machine’s perspective, they are the (discrete)
EEG signal.

O = o(1), o(2), .., o(z), , with |O| = z;

Let omap each trial t onto one element from finite setO;

o(t) = ot ∈ O, ∀t = 1, ..., T

where z represents the number of possible observations, or cardinality ofO at every
trial t. Only one observation out of z possible ones can take place at a time or trial t.

The generative (Bayesian) model as defined in [FitzGerald et al., 2015] writes:

P (õ, ũ, s̃, γ |m) = P (õ |s̃,m)︸ ︷︷ ︸
likelihood

P (s̃, ũ |γ,m)︸ ︷︷ ︸
transitions

P (γ |m)︸ ︷︷ ︸
precision

(6.1)

where õ = o1, .., oT ∈ O , s̃ = s1, .., sT ∈ S, ũ = u1, .., uT ∈ U. Note that we denote
matrices with bold capital letters and vectors with only capital letters. The model is
defined by three major elements, as given in equation (6.1):

(i) from (6.1), Likelihood matrix A: represents the likelihood of observations given
the hidden states:

P (õ |s̃,m) =
T∏
i=1

P (oi |si,m)︸ ︷︷ ︸
likelihood

, P (oi = k |si = h) = Ak,h

where A ∈ Rz×n. In other words, given each h = 1, ..n states there is a probability to
get a k = 1, ..z observation. Thanks to the likelihood, our Bayesian model contains
probabilities from the past experience, and enables us to predict the probability to
perceive a new observation ot+1 given a state st+1.
(ii) from (6.1), Probabilistic transition matrix between states B(ut), given an action:

P (s̃, ũ | γ,m) = P (ut|γ,m)
t∏

i=1
P (si+1|si, ui,m)︸ ︷︷ ︸

transitions

;P (st+1 = w | st = q, ut) = B(ut)w,q

where w, q = 1, ..n, hence B(ut) ∈ Rn× n, and n refer to the number of hidden states.
This means that transitions between hidden states depend upon the current putative
action ut under policy π ∈ 1, · · · ,K . A policy indexes a specific sequence of control
states (ũ|π) = (ut, · · · , uτ |π):

lnP (ũ|γ,m) = γ︸︷︷︸
precision

·Q(π) = γ · (Q(ut+1|π) + · · ·+ Q(uτ |π)︸ ︷︷ ︸
expected(negative) free energy

)

Q(uτ |π) = EQ(oτ |π)[lnP (oτ |m)]︸ ︷︷ ︸
extrinsic value

+EQ(oτ |π)[DKL[Q(sτ |oτ , π)|Q(sτ |π)]]︸ ︷︷ ︸
epistemic value

(6.2)
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weighted by the precision parameter γ (detailed below in 6.3.1.2), such control states
or putative actions are chosen to minimize Expected free energy, whereDKL is the
Kullback-Leibler (KL) divergence or relative entropy (for more on KL divergence, see
Appendix 7.5); andEQ(oτ |π) is the expectation of a future outcome oτ given policy π.
For the sake of readability we develop each element from equation (6.2), as follows.

An action ut is chosen from a list of putative actions uτ under a given policy π that
minimizes Expected free energy which is comprised of 2 elements:

1. Extrinsic value or the preferred final outcome (the goal we wish to achieve) which
we maximize, that is its expectationEQ(oτ |π).

2. Epistemic value or information which we wish to maximize, that is, its expectation
EQ(oτ |π). That is equivalent to minimizing the prediction error, or the discrepancy
between the prior (predicted hidden state or priorQ(sτ |π)) and posterior (actual
hidden state given the observationQ(sτ |oτ , π)). We achieve this by minimizing
the relative entropy (i.e., minimizing the KL divergence relative to the predicted
outcome).

You can notice thatEQ(oτ |π) of a probability distribution Q (called the variational) is
used twice, and serves as a bound and link between different probability distributions P
and Q, that describe the extrinsic value and epistemic value, respectively (for more details,
see Appendix 7.5).
So, we are wagering between the epistemic and extrinsic value at each iteration,
i.e., trying to get closer to the prior goal (future outcome) by acquiring maximum
information.

The extrinsic value contains P (oτ |m), which is the prior distribution over future
outcomes, referred to asCτ . So, letCτ be the preference of future outcomes oτ ∈ O. As
part of extrinsic value, it influences the choice of action to reach such desired outcomes. If
we consider all available observations from setO as future outcomes then oτ = o(z):

Cτ = σ([C(o(1)), C(o(2)), .., C(o(z))])T

where σ is a softmax (normalized exponential function) of final outcomes, such that:

σ : Rz 7→ Rz,
σ(oτ )j = e(oτ )j∑z

i=1
e(oτ )i

∈ (0, 1), ∀j = 1, ., z (6.3)

The softmax function here compresses a z-dimensional vector [C(o(1)), C(o(2)), .., C(o(z))]
of real values into anotherCτ vector of the same dimension that contains real values
that add up to 1 and reside within the range of (0,1). In other words, we transform all
observations from setO into prior probabilities of future outcomes, some of which we
favor, other which we penalize.
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(iii) from (6.1), Precision parameter γ

P (γ |m) = Γ(α, β)

where Γ is a gamma distribution of scale parameter α and rate parameter β. If a random
variable X follows a Gamma distribution then:

f(x;α, β) = βαxα−1e−βx

Γ(α) , for x > 0 and α, β > 0

where Γ(α) is the gamma function (i.e. an extension of the factorial function):

Γ(α) = (α− 1)!

The precision parameter (also called temperature) determines the degree of
confidence of the control states or beliefs over actions. For example, if γ 7→ ∞ the
beliefs over policies merge into a single policy, being over optimistic and prone to errors,
with immediate or fast action (increased exploitation), inversely if γ 7→ 0+ the beliefs
over policies spread uniformly resulting as a very high exploration or waiting time. In
short, the higher the confidence about having a good policy (i.e. belief of high precision),
the smaller the exploration and vice versa.

We have detailed the components of the internal, Bayesian, generative model, a
distribution P (ot, st, ut, γ|m) that connects observations ot to hidden states st through
control states ut.

"The agent and the environment interact in cycles. In each cycle, the agent first figures
out which hidden states are most likely by optimizing its expectations with respect to the free
energy of observations. After optimizing its posterior beliefs, an action is sampled from the
posterior marginal over control states. The environment then picks up this action, generates a new
observation and a new cycle begins". [Friston et al., 2014]

6.4 Active Inference for the P300-speller

We aim at designing a fully adaptive P300 speller that learns and acts optimally in
real time. The above generic and flexible probabilistic framework, Active Inference
enables the machine to automatically and optimally update an internal model of the
environment (here the user given a BCI task) and select appropriate actions. Specifically
for the P300-speller, the actions to be considered are – flashing or spelling letters or
switching off the screen. This allows us to implement within the same framework: (1)
optimal stopping & flashing but also when (2) the user is looking away from the screen –
"lookAway" case, in which the machine can pause the application; together with above
mentioned, we can also implement (3) an ErrP classifier, where after receiving an ErrP,
the machine can automatically choose to spell the next probable letter or continue
flashing to increase evidence for the target letter.

When endowing the machine with Active Inference, in a P300 speller application (see
Figure 6.2), the machine:



CHAPTER 6. ADAPTING P300-SPELLER TASK WITH ACTIVE INFERENCE 142

Figure 6.2: A depiction of Active Inference for a P300 speller: (1) the user hidden states on the left represented
as long term intentions and short term reactions to stimuli, (2) the observations are the (preprocessed) EEG
signal, (3) the actions the machine based on its internal (generative) model of the user. The generative model m
is simplified in this figure, representing Free Energy as a function of hidden states (updated with observations)
and actions Fm(ut, st).

• accumulates the information about the target/non target letters (P300 or not) and
incorrectly spelled letters or not (ErrP or not), to update its belief about the user’s
intention or command,

• optimizes its interactions through inference, i.e., minimizes discrepancy between
observed data and predictions about user intentions to spell a letter, or pause;

• optimizes its interactions with the user by spelling and flashing items or switching-
off in a flexible and adaptive manner, in order to maximize speed and accuracy.

In the next two sections, we explicitly describe the key model parts when instantiating
the P300 speller BCI within the Active Inference framework. We start first with the
machine’s generative, internal model of the user in section 6.4.1, and then describe its
possible actions towards the user in section 6.4.2.

6.4.1 Generative model of the user.

Prior to any observation and in the absence of prior knowledge, the probability of the
intention to spell a given letter is the same for all the letters (high entropy). Then, after
each flash and electrophysiological observation, these beliefs are updated based on the
generative model m which embodies the machine’s internal representation of the user
and task.
The modelm rests on transitions among hidden states that are coupled with actions, it
contains:

S – finite set of user hidden states:
There are 37 intentions x 4 reactions = 148 possible user hidden states the machine must
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infer. The first are the user’s intentions to spell one out of 36 letters or digits at a time,
within the 6x6 grid, or the 37th intent to pause by looking away from the screen. Such
state we refer to a lookAway state and it enables asynchronous BCI behavior. The second
represent 4 user’s reactions to the machine’s actions or stimulations. Namely, user
intentions are inferred by the machine through an accumulation of short term user’s
reactions to stimuli being – "My target letter was just flashed" – giving a P300 (target)
observation, or inversely – "My target was not flashed" – yielding a non-P300 (non-target)
observation. Another type of user reaction is "My target letter was spelled" – or – "What is
spelled is not correct" – giving rise to an Error Potential (ErrP) as observation. Active
Inference enables us to infer the cause of sensory observations, here the user intentions,
which in turn are influenced by the machine’s actions.

U – finite set of machine control states or actions:
There are 36 spelling + 12 flashing + 1 switch-off = 49 possible machine’s actions that

can help the machine learn about the user hidden states and accomplish the user’s goal.
There can be 12 possible flashing (6 columns and 6 rows) without repetition, or spelling
one out of 36 letters; or switching-off the screen in the case of a "lookAway" state.

O –finite set of observations or outcomes: Active Inference instantiated in [FitzGerald et al., 2015]
deals with discrete observations, namely in our case : (1) high or low confidence discrete
values associated with the observation of a target or non target signal, and similarly (2)
high or low confidence values associated with the observation of a correct or incorrect
feedback. This means that after each flash, the machine observes either target (P300) or
non target values with a certain of confidence. Similarly after each spelling the machine
observes either an correct or incorrect (ErrP) feedback with more or less confidence.
These confidence levels are given by the class probabilities estimated by the classifier.
We denote them as follows: for a correctly spelled letter, we refer to as a Feedback
Correct FC (FC0, FC1 for not confident and for confident correct feedback, respectively);
and Feedback Incorrect as FI (FI0, FI1 not confident and confident incorrect feedback,
respectively). If the machine is completely unsure whether the feedback is correct or
not, it is classified as undefined feedback, or FXX . Same applies to flash target and non
target (T0, T1 and NT0, NT1 for not confident and confident target, and non target,
respectively) and TXX for an undefined response to a flash, as depicted in Figure
6.3. Note that lookAway is not specified as an additional observation but can only be
recognized after having observed a sufficiently large number of non-target or undefined
observations. Note that the latter is not a preset rule but derives automatically from our
Active Inference approach.

A – prior over outcomes given a state (likelihood)
The likelihood is the probability to observe an outcome o_t, given a state s_t, and A is a
matrix of z possible observations, given n possible hidden states:
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Figure 6.3: After each flash or spell, an observation – target/non-target or feedback correct/incorrect signal –
is being mapped to a discrete high-to-low degree of confidence or undefined observation O(i), i=1..10. Those
discretized observations are the ones that enter the Active Inference model.

A =

 o(1,1), o(1,2), . . . o(1,n)

... . . . . . .
o(z,1), . . . . . . o(z,n)


For instance, A contains the probability to observe a high confidence target – T1 or
low confidence incorrect feedback – FI0, given a user hidden state – a column flashed
or a letter spelled, respectively. Thanks to A, the machine knows how reliable is the
classification. In BCI, Amay typically be defined based on calibration or training data.
This means that A should ideally be defined for each user specifically. This is indeed
important to define the levels of confidence that will drive th BCI interpretations and
actions. Namely, Active Inference will rely on those levels to decide whether it should go
on flashing in order to make a reliable decision, or spell with no further due. The way we
define the matrix for each individual is further described in subsection 6.5.1.3 pertaining
to the realistic simulations we performed.

B(ut) – transitions between states given an action
To transition from one state st to another st+1 is possible through action (control states).
The choice of action ut given a state st depends on the priors C over the desired final
outcome oτ but also on the precision over action or the exploration/exploitation ratio γ
while conforming to the free energy minimization, as mentioned in (6.2). Concretely,
transition matrix B contains all the possible combinations of states or user intentions
n× n, with |S| = n, which we define prior to the experiment. These are the same for
every subject, as follows.
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Filing transition matrixB:

B =

 s(1,1), s(1,2), . . . s(1,n)

... . . . . . .
s(n,1), . . . . . . s(n,n)


where n = 148, containing 37× 4: user intentions to spell 36 letters or pause (37th
lookAway), along with short-term user reactions to stimuli (1. correct/ 2. incorrect
spelling, or 3. target/ 4. non-target flashing). For all subjects, the transition matrixB
is the same, and its values are either 0 or 1. Values 0 and 1 refer to implausible and
plausible state transitions, respectively. For instance, when a set of items has just
been flashed, the current state might be the recognition of the target, or not, and a
subsequent user’s state could be the recognition of a future flash or the recognition of a
displayed feedback, depending on the action taken by the machine.

C – priors over final outcomes
Vector C influences the choice of action. It expresses a goal or preference in the form of a
prior probability over final outcomes, with the highest probability being given to the
most desired outcome. Hence, the prior beliefs encode a utility function which, in our
case will favor the high confidence Feedback Correct ’FC1’ as final observation oτ . This
amounts to aiming at the state –My target letter was spelled –. In our case, we assign
equal values (preferences) to the appearance of target/non target observations, while
penalizing incorrect spelling, and favouring correct spelling, as in Figure 6.4. As we
tested various values for C, we provide more details in the subsection 6.5.1.3 Simulations.
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Figure 6.4: Softmax function (above), yielding output values between 0 and 1 (y axis) for each observation
within the setO; from FC1, FC0, FXX, FI0, FI1 which refer to feedback observations (o(2), o(3), .., o(6)) and T1,
T0, TXX, NT0 and NT1 denoting target/non-target observations o(7), o(8), .., o(11) (x-axis). Logarithm of the
softmax (below) encodes a utility function, in which we favour the correctly spelled letter – FC1, and penalize
feedback incorrect FI1 and FI0, and undefined FXX feedback; and equally favour the apparition of target T, non
target NT or undefined TXX observations.

γ - precision over priors
In a P300 speller we wish to spell correct letters in a minimum amount of time. However
there is always a trade-off between speed and accuracy. This trade off is governed by
parameter γ which sets the balance between exploration and exploitation. In practice,
this is arbitrarily set by defining the prior distribution over parameter γ (a gamma
distribution with parameters α and β). See 6.5.1.3 Simulations, for more details.

6.4.2 Optimal Interaction

6.4.2.1 Optimal flashing & stopping

Vector C , precision γ, and transition matrixB are defined prior to the experiment,
given the task and goals. Matrix A is learned from training data, for each user. Then, here
is the course of actions that unfold during the online interaction:

• List all potential actions ut at time t.

• Compute for each action its posterior expectation or epistemic valueEQ(oτ |π) and
compute KL divergence (also called relative entropy) between priorQ(sτ |π) and
posteriorQ(sτ |oτ , π) over the hidden states (using transition matrix B, likelihood
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A, preferences C and precision γ); Note that we use the full transition matrix B
(meaning that we consider all possible hidden states during a choice or time t).

• The higher the information (epistemic value), the most likely this action will be
chosen. When we consider not only a single putative action, but a series of actions
to reach a predefined desired outcome, we then talk about policies π. Hence, we
get a list of actions (ũ|π) = (ut, · · · , uτ |π), active inference picks up the optimal
policy, that is the one that maximizes the information gain as well as maximizes
the reward (outcome).

• Update internal state st based on observation ot.

• Repeat the selection of the next action ut until the spelling of a letter (the case
without an ErrP classifier); or in the case in which we use an ErrP classifier: repeat
action selection (to flash or spell) until the machine spells the correct letter and
detects a feedback FC1 (which will be obtained depending on the error rate of the
feedback classifier, set in A).

Active Inference permits a holistic and automatic control over the machine’s actions,
thanks to the free energy principle that unites action and perception (cause and effect)
into a single Bayesian framework, see figure 6.5. As reminder, the machine chooses such
action that provides most information (min entropy relative to the predefined goal or
Feedback Correct). Hence, flashing letters automatically provides more information about
the target than spelling one by one letter.

Figure 6.5: Simplified schematics of Active Inference choice of action. It starts by predicting the future
observation or hidden state. Using priors and preferences it will choose an action to reinforce its prediction,
for instance to flash a certain column; this will produce an observation (within degrees of confidence) and
depending on the likelihood it will choose to continue flashing or to spell a letter. In case of an ErrP, the
spelling can be followed by more flashing to reinforce its certainty about the spelled letter or immediately
spell another letter.

Thanks to Active Inference, the machine is able to execute optimal flashing (with
stopping), that is, flashing those letters which give most information about the target
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letter. Furthermore, Active Inference offers a generic and flexible framework that can
also incorporate other adaptive behavioural features as described below.

6.4.2.2 Detecting a LookAway state

We here refer to the situation where the user is not looking at the screen anymore. By
simply adding another 37th hidden state to the existing set S, we provide the subject
with the possibility to pause the machine. Note that there is no clearly defined single
observation associated with that state which instead, can only be inferred through
the absence of target like responses. In other words, if the machine observes many
consecutive non target signals, it should eventually conclude that the user is not actively
looking at the screen. Note that the model thus has to be able to distinguish between a
poor performing subject, producing ambiguous signals and a subject which intends to
pause the P300 speller. A natural consequence is that the LookAway state often requires
more flashes than any other user intention to be inferred. That is because Active
Inference observes the 37th state, but as it in fact does not exist, it does not elicit a real
observation (there is no 37th letter), it will keep receiving non-target responses when
flashing. Note that in our case we did not model a "switch on" button action, which
could for instance rely on a SSVEP response with a dedicated stimulus always active
at a corner of the screen. So far, we only simulate independent trials with different
intentions, some of which can be a LookAway state to stop the machine.

6.4.2.3 Automated error correction

We added correct and incorrect feedback to the existing set of observationsO, see Figure
6.3. We simulated a perfect classifier, with either a high confidence correct or incorrect
feedback classifier, i.e., assigning zero probability to the appearance of not confident
correct and incorrect feedback as well as undefined feedback, p(FC0, FI0, FXX) = 0. As this
is not a very realistic case, we also simulated a more realistic feedback classifier, a 95%
specificity (a 0.95 probability to be right about a correctly spelled letter); and 75%
sensitivity (a 0.75 probability to be right about an incorrectly spelled letter). This way
the confidence for specificity (Feedback Correct) is p(FC1 = 0.95; FC0 = 0; FXX = 0; FI0 = 0;
FI1 = 0.05), and for sensitivity (Feedback Incorrect) it is p(FC1 = 0.75; FC0 = 0; FXX = 0; FI0
= 0; FI1 = 0.25).

If Active Inference realizes it spelled an incorrect letter, it will choose by itself to
continue flashing gain additional information about the target, or to immediately spell
the second most probable letter. In the case of a perfect feedback classifier, it will be
100% sure about the letter whether it is incorrect or correct. In the case of the realistic
feedback classifier, it would not be so sure (5% and 25% error for correct and incorrect
letter, respectively).

In the next subsection, we describe the evaluation approach we pursued in order to
validate Active Inference for implementing a flexible and efficient P300 speller BCI. This
includes a description of the Dataset and Data Features, of the Model, of the Simulation
procedure and of the Evaluation Metrics we used.
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6.5 Experimental Design

6.5.1 Dataset

We use real training data from on of our previous studies [Mattout et al., 2015] to which
18 healthy subjects (11 males and 7 females) aged from 22 to 30 took part voluntarily to
evaluate the P300 speller brain-computer interface (BCI) paradigm. Thirty- two EEG
sensors were used and their placement followed the extended 10–20 systems. The
P300-speller BCI experiment is made of two recording stages:

- the initial training phase enables to optimize spatial filters [Rivet et al., 2009] and
a probabilistic classifier [Mattout et al., 2008] that can then be used to differentiate
response-to-target data from response-to-non-target data. In this training phase,
subjects were given a sequence of 25 characters to focus on. For one character, matrix
rows and columns were flashed alternatively during three complete cycles of 12 stimuli
(two of which were including the target item). The training dataset is thus composed of
750 trials for the non-target class and 150 trials for the target class.

- following the training phase, each participant completed 3 copy-spelling sessions
as a test phase. Each session was made of twenty-four 5-letter French words, hence 360
letters in total. The process of flashing each row and column was repeated three times
(3× 12) per character spelled.

6.5.1.1 Features

From the data recorded during the test phase, the features are extracted for our
simulation, as follows. A first preprocessing step consisted in applying of a 2nd order
bandpass Butterworth filter with cut-off frequencies of 0.5 and 20Hz.

We use Riemannian geometry, the state of the art data classification approach
developed by [Barachant et al., 2013]. It uses covariance matrices which are Symmetric
Positive Definite (SPD) matrices and lie in a manifold. We define such covariance
matrices as follows. LetXi ∈ RS×N the EEG epoch corresponding toN consecutive
samples in response to the ith stimulus recorded on S sensors, we construct the
super-trial X̃i with the concatenation ofXi and the temporal prototype P which is the
average of all target epochs recorded during the calibration phase:

X̃i =
(
Xi

P

)
Let us compute the corresponding covariance matrix for the ith stimulus:

Σ̃i = 1
N − 1X̃iX̃i

T
=
[

ΣP CTP,Xi
CP,Xi Σi

]
where Σi and ΣP are respectively the covariance matrices of theXi EEG epoch and

the temporal prototype P , andKXi,P the cross-covariance between theXi EEG epoch
and the temporal prototype P .
In the same way, we can compute this covariance matrix for each trial of the calibration
phase for the target and non-target classes.
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To determine to which class (target or non target) a covariance matrix X̃i belongs,
the Riemannian distance is computed between it and the Riemannian means for target
and non-target classes respectively denoted Σ̃T and Σ̃NT , as follows. Let us consider
two SPD covariance matricesK1 andK2, where ‖·‖F is the Frobenius norm, then the
Riemannian distance between them is:

δR(K1,K2) =
∥∥(log K−1

1 K2)
∥∥
F

(6.4)

Knowing that the diagonal elements of such n× n covariance matrices are real
positive eigenvalues λi, we can write the Riemannian distance as:

δR(K1,K2) =

√√√√ n∑
i=1

log2 λi

Then, for each trialXi we can extract the following measure:

rTNT = δR(Σ̃i, Σ̃T )
δR(Σ̃i, Σ̃NT )

For classification, we used a simple probabilistic generative model of the data,
based on a two univariate-Gaussian mixture (one Gaussian distribution per class).
Then, following Bayes Rule, the likelihood when seen as a conditional density can be
multiplied by the prior probability density of the parameter and then normalized, to
give a posterior probability density :

p(Cj |Y ) ∝ p(Y |Cj)p(Cj)

where Y is the feature on which the classification Cj was done, j = 0 referring to
the target and j = 1 to the non-target class and with

p(Y |Cj) = 1
σj
√

2π
e
−

(Y−µj)2

2σ2
j

where µj and σ2
j are respectively the mean and the variance of the Gaussian

distribution for the class j.
Finally, for our simulation, we calculate the log likelihood lfj , in case the feature is

the rTNTi measure for each flash, as follows :

lfj = log(p(rTNTi|Cj)) = −log(2π.σrTNTj )−
(rTNTi − µrTNTj )2

2σrTNTj

whereµrTNTj andσ
2
rTNTj

are themeans and variances of the two Gaussian distributions
estimated from rTNT measures computed on data recorded during the calibration
phase.
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6.5.1.2 Mapping data features onto model observations.

After each flash, the machine receives 2 values at a time (log likelihood of Riemannian
distance to target and non target). To transform such data into a discrete input that is fed
to Active Inference, i.e., the set of observationsO with high and low confidence, we do
the following. On training data, we first calculate the log-likelihood ratio or a difference
(lf0 − lf1)i per class (target, non-target) at each trial or flash i, and from it we calculate
a threshold ρT for target and ρNT for non-target. To compute thresholds (using the
same training data as for calculating Riemannian distance), we use the Median Absolute
Deviation (MAD). MAD is a more robust estimator of scale than the sample variance or
standard deviation, and it works better with non normal distributions. Let us denote
Md the median of the distribution and Li a random event or (lf0 − lf1)i drawn at each
trial i, then MAD is referred to as ρ(L) = Md(|Li −Md(L)|). For pairs (lf0, lf1)i that
correspond to target, we denote ρ(L)T = ρT and separately, we calculate MAD for
non-target observations, and denote it ρ(L)NT = ρNT . However, if the training set
does not possess a sufficient number of samples, outliers will have a strong impact on
these estimations. This means that the distribution of the classifier output might
differ significantly from the test set, and it could be hard to generalize the resulting
observations. Therefore, in order to get a more robust MAD estimate, we approximate
the distributions of (lf0 − lf1)T and (lf0 − lf1)NT with beta distributions, using a
maximum likelihood estimate. This yields the mean and variance parameters for both
distributions. Thanks to this approach we obtain a more robust calibration and less
variability between participants. Note that for each subject, we calculate these individual
thresholds from their training dataset.

From the testing data, at each trial j = 1..M we draw with repetition a random
likelihood pair (lf0 − lf1)j or Lj . Then depending on how it compared with the
pre-determined thresholds (ρT and ρNT ), we assign an observation categoryφ(Lj) ∈ O,
as follows:

φ(Lj) = φ(lf0 − lf1)j =

7→

{ o(6), target ’T1’, if Lj ≥ ρT
o(10), non-target ’NT1’, if Lj ≤ ρNT
o(9), ’NT0’, if Lj ∈ (ρNT , ρNT + 1

4 ∆ρ]
o(7), ’T0’, if Lj ∈ [ρT − 1

4 ∆ρ, ρT )
o(8), TXX, if Lj ∈ (ρNT + 1

4 ∆ρ, ρT − 1
4 ∆ρ)

(6.5)

where∆ρ = ρT − ρNT .
If Lj ≥ ρT then Lj represents a target with high confidence ’T1’, also if Lj ≤ ρNT ,

then Lj represents a non-target with high confidence ’NT1’. The undefined ’TXX’ are
placed half way between the two thresholds ρNT and ρT , while we equally divided this
distance for less confident observations. ’NT0’ and ’T0’ are respectively half-way between
ρNT and ρT , see Fig. 6.6. Note that such observations (with degrees of confidence) are
fed to Active Inference framework.
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Figure 6.6: Data from subject 13, likelihood distributions for each trial or flash (lf0 − lf1)_i. On training data,
we calculate a Median Absolute Deviation (MAD) per class – target and non target (left); MAD we denote ρ,
which we use for attributing confidence values of testing data (right).

6.5.1.3 Simulations

We simulate the spelling of 1200 random letters per subject. For each target, Active
Inference runs until it decides to spell a letter (without ErrP classifier) or runs until it
finds a correctly spelled letter (with Errp classifier). If it flashes the row or column which
contains the target, we randomly fetch a target pair (lf0 − lf1)T from our testing
dataset. Similarly, if one flashes a column or row that does not contain the target, we will
fetch a random non target observation from our test dataset. We then map it with φ
onto one of our z=6..10 (target/non-target) observations from setO. After this mapping,
the pair may turn out to fall in the wrong category depending on the quality of the
observation. As we are picking data randomly, after a consecutive flash, we cannot
choose to pick a refractored P300 from our data, and provide more realistic scenario.
Hence, we are obliged to set a limit to Active Inference choice of flashing by preventing
it from flashing a row/column consecutively.

Note that for simulating an ErrP classifier, the possibilities of describing feedback
(ErrP) data with a beta distribution are very large including many possible combinations.
Hence, we simply create probabilities to choose a correct or incorrect letter truly or
falsely with different specificity and sensitivity levels, as reminder see 6.4.2.3.
Prior to the testing phase, we assigned the following values to the model parameters:
—————————————
(i) Calculating likelihood matrixA :
Matrix A expresses the probability of each observation category, given each possible
state value. It is computed individually, from the training data of each subject. In our
simulations, we draw NT=2000 samples of target data, NNT=2000 samples of non target data.
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We then computed the proportion of samples who fell into each observation category in
order to set the above probabilities.
—————————————

(ii) Setting values for C
Values chosen for C are same for all subjects. We assign a high value to a correctly spelled
letter, ’FC1’, and penalize the wrongly spelled ’FI1’, (for a reminder, see Fig. 6.4 above).
Here we discuss the empirical evaluation of the distance between the extreme values
assigned to observations, i.e., penalty and preferences. For instance, how strong should
be the penalty for incorrect feedback ’FI1’, ’FI0’ and ’FXX’. Observations (target or not)
are valued equally (zero vector) oT (i) = 0, where i=6,..10 (as reminder of observations,
see figure 6.3). In contrast, we vary values for feedback observations (correct or not),
as follows. A quadratic function g(d) = d2, d ∈ [1, 2, ..5]maps the penalty to the
observations, and a parameter κ, regulates such penalty: oT (j) = κ+ g(d) for j=1,..5.
For instance, the strongest penalty is when g(d) = 52 is set for an incorrect feedback
with high confidence (FI1); κ is a parameter influencing the penalty that we vary for 3
distinct subjects, see Figure 6.7.

Figure 6.7: Varying κ in C vector to demonstrate difference in speed (flash mean), in accuracy, and Bit Rate for
3 subjects, from good, below average to poor classification performance respectively (S03, S08, S04).

By augmenting κ we can decrease the distance between the feedback correct(max)
and incorrect(min). Note that the smaller the penalty (higher κ), the faster the spelling
with less accuracy which in total does not significantly affect the bit rate (BT). For all
subjects, we empirically fixed κ = 5.6 i.e. between κ ∈ [4, 7], a range of values that we
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determined empirically and for which Active Inference is stable and exhibits the
expected type of behaviour.
—————————————
(iii) Selecting values for precision, γ
For our thorough evaluation, we considered a unique prior distribution over the
precisions parameter γ, for all subjects, with α = 1 and β = 128. To illustrate the effect
of this parameter though, we performed a few simulations with three different subjects
(S03, S04, S08), varying its prior distribution. For α ∈ (1, .., 128) and β ∈ (1, .., 128), we
performed all the combinations and did not observe any significant change in accuracy,
flash mean nor bit-rate, see figure 6.8. This is because of our choice of transition values
being either 0 or 1 (high confidence) in the Bmatrix, i.e., the γ parameter in that case
has very little influence on the choice of future action and hidden state.

Figure 6.8: Varying α and β parameters of the precision γ. The rectangle colour denotes bit-rate, the size of
circles denotes flash mean, and the circle colours denote the accuracy. The values do not significantly vary
depending on the changing parameters.

6.5.1.4 Evaluation Metrics

We test the following Active Inference (AI) models:

• basic AI (optimal stopping and flashing);

• basic AI + lookAway.

To examine the performance rates of basic AI + lookAway, in our simulation (same for
12000 “letters”), instead of selecting random letters as target, we set lookAway as the only
target “letter” (12000 “lookAways”).

• basic AI + realistic ErrP classifier;

• basic AI + perfect ErrP classifier.
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The ErrP classifier output contains purely simulated data (both perfect and more
realistic).
We compare these AI models to two classical approaches:

1. P300-spelling with a fixed number of flash repetitions (12) and pseudo-random
flashing, denoted as fixed-flash;

2. P300-spelling with pseudo-random flashing but optimal stopping, using Naive
Bayes classifier [Margaux et al., 2012]. As mentioned in the related works, optimal
stopping spells a letter once the accumulated evidence about a letter reaches a predefined
confidence threshold or certainty. We implemented optimal stopping with different
threshold values (between 0.8, 0.9, 0.95 and 0.99). We chose 0.9 as it yielded highest bit rate
on average in our dataset.

Note that all approaches apply on the same features – Riemannian distance of
covariance matrices, as described above in the subsection 6.5.1.1 Features.

For each subject, we compared the performance of the various algorithms by
measuring the bit rate. The amount of bits (b) transferred is given by:

b = log2(K) + P · log2(p) + (1− p) · log2( 1− P
N − 1)

withK : number of possible choices (classes) and p: P300 classifier accuracy. Considering
that each flash lasts 0.2s, the time T it takes to spell a letter is hence 0.2×Nbflash, thus
the bit rate br indicates the BCI information transfer rate in bit/min with: br = b× 60

T –
see [Yuan et al., 2013].

We tested to which extent the performance (as measured by bit rate) of optimal
flashing outperforms classical P300 algorithms. We performed a one-way analysis of
variance (ANOVA) with repeated measures and post-hoc Tukey with false discovery
rate correction [Noble, 2009] enabling a clear differentiation between algorithms.
Independent variable: algorithm (6 groups: 4 Active Inference + 2 standard), dependent
variable: bit rate. The threshold of significance is set at p < 0.01. Data collected
from the simulated spelling of 12000 letters with 18 subjects who were recorded in
[Mattout et al., 2015] experiment.

6.6 Results

We present the comparison of AI instances with standard P300-speller algorithms using
their average bit rate values, see table 6.1, and see figure 6.9.

Methods Fixed-flash Optimal Stop AI basic AI ErrP perfect AI ErrP real AI lookAway
Bit rates 10.49 b/m 45.86 b/m 54.32 b/m 73 b/m 64.94 b/m 51.85 b/m

Table 6.1: Table with bit-rate means for comparing all methods.

Active inference has lower accuracy rates on average than Optimal Stop (71.97% vs
76.62%, Figure 6.10.B.), however it is a lot faster (18.51 vs 24.88 flashes, Figure 6.10.C.).
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Figure 6.9: Comparison in bit rate (bit/min) between fixed flash, optimal stopping 0.9, AI basic, AI of lookAway,
and AI + realistic ErrP. All methods significantly differ from one another (p < 0.01).

Figure 6.10: Comparison of (A.) Bit Rate, (B.) Accuracy and (C.) Mean number flashes, of Active inference basic
(in red), AI with realistic ErrP classifier (in green) and Optimal stopping (in blue) across subjects (sorted by bit
rate from left to right).
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It is interesting to see how Active Inference adapts its flashing pattern depending on
the certainty of the observations. In Figure 6.11 we compared side by side subjects with
poor (S04) and good (S03) classification performance.

Figure 6.11: Progression of probabilities of letters during flashing of AI with realistic ErrP. Above is a subject
with good performance, S03, and below a poor one, S04. Each curve corresponds to one letter and ends with a
red triangle that represents a "correctly" spelled letter (what it believes to be correct, but it can be wrong). If
the curve ended with a triangle while in low probability, it represents exactly that, a wrong assumption. To
avoid saturation of information in this figure, the red refers to correct denoting both correct feedback (red
triangle) and target (red circle), while green (incorrect) refers to incorrect feedback (green triangle) and
non-target observations (green circle). The undefined target/non-target is in blue. The frequency of error is
evident in the lower plot (subject S04) while there is no error (all are correctly spelled letters) in S03.

When studying Active inference with ErrP, we noticed that at least a 75% accurate
ErrP classifier (with specificity = sensitivity) is necessary for Active Inference to
outperform other algorithms (see Figure 6.12).

Figure 6.12: Bit Rate increase with feedback classifier’s accuracy – from 50 to 100 %
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6.7 Discussion

The naive algorithm (Fixed flash) achieves only (10.49b/m). Active Inference showed a
significantly higher bit rate (54.32bit/min) than optimal stopping (45.86b/m), giving
an increase of about 17%. Active Inference performance increased even further when
comparing to optimal stopping by 58% when a perfect ErrP classifier with 100%
accuracy is used (73b/m). However, this perfect classifier being over optimistic, we
considered a more realistic one with specificity 0.95 and sensitivity 0.75 (64.94b/m);
resulting with an increase of about 41% when comparing to optimal stopping. When
only idle user or "lookAway" states are simulated, it accurately "switches off" the
speller about 90% of the time, after about 24 flashes (51.85bit/min). Results show that
Active Inference not only is able to successfully incorporate various instances of a P300
speller within one single framework, but also showed significantly higher bit rate when
comparing AI basic to Optimal Stopping algorithm.

When looking at the performance of Active Inference subject per subject it behaves
worse than Optimal Stopping for 2 out of 18 of them (i.e. S05 and S11). Interestingly,
those are among the subjects with lowest bit rate, Figure 6.10.A.). It can be explained by
the fact that Active Inference has a short observation time (flashing, Figure 6.10.C.) if it
receives a consecutive number of observations with low probability (e.g. undefined
observation TXX). However, the speed-accuracy trade-off can be regulated within the
vector C by setting a stronger penalty to wrongly spelled letters.

Overall, Active Inference shows promising results in terms of flexibility, genericity
and performance.

6.8 Conclusion

In this chapter, we propose the use of Active Inference, a generic Bayesian framework
that provides a computational model of brain processes. If endowed to the machine,
Active Inference has the potential to be applied on various BCI tasks, to adapt the
machine to the user not only by adjusting to signal variability but by modeling and
acting upon its causes (here a simplified example of user states, that are, user intentions
in a P300 context). We show that it is very flexible and generic, and demonstrate it via a
P300 speller simulation on real-data. Furthermore, we demonstrate superiority of Active
Inference when compared with well known P300-speller approaches.

To make use of Active Inference one must specify: what the machine observes, here,
a P300 or Error Potential for instance; what the machine infers, here, the user intentions
to spell or pause; and what the machine performs as action, here, to flash, spell or
switch-off the application for example. With such information provided to Active
Inference, it builds confidence through observations, predicts user intentions, and
chooses the optimal action to minimize prediction error and reach a desired outcome or
goal. As consequence of applying Active Inference in a P300-speller context, it performs
optimal flashing and stopping, that is, automatic flashing of such letters that maximize
information (minimize entropy) about the target letter, and stopping once the goal
(correctly spelled letter) is reached. We support our choice for adding yet another
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method for adapting a BCI as it offers a vast range of adaptation possibilities and
flexibility, while minimizing only one objective function, the free energy.

Due to the lack of ground truth, at themomentwe implemented only two observations
for the ErrP classifier: correct or incorrect feedback (in/correctly spelled letter) high
confidence, "FC1" and "FI1" with a degree of specificity and sensitivity (75% and 95%),
but not low confidence "FC0" or "FI0". In a more realistic scenario, Active Inference
would benefit from an increased variety of observations, i.e. correct / incorrect feedback
with low confidence and "undefined". In this case its distribution would be calibrated
during P300 training, as with target and non-target observations.

Clearly, the fact that this is a simulation is a drawback, as we have no way of
controlling the refractory effect for instance. We account for this phenomenon in our
simulations by forbidding two consecutive stimulations (which effects in a slight
reduction in performance of Active Inference). In the future, we would account for an
additional observation representing the decrease in the P300 amplitude with repetition
or frequency.

Another constraint with Active Inference is that we must tune all the mentioned
parameters as priors beforehand. We presented an application where only the likelihood
is learned for each subject while other variables were empirically selected and kept
the same for all subjects. In order to learn a sensible range for those parameters
and validate our model, we first tested Active Inference on purely simulated data, in
[Mladenović et al., 2017a].

In the future we could use an additional "layer" of active inference to implement a
language model for word auto-completion. In such case the set of hidden states could be
increased with another set referring to correctly spelled word, along with letter. And,
desired outcome would correspond to a "correctly spelled word" instead of or along with
the correctly spelled letter. Also, we could imagine applying Active Inference to model
both the machine and user’s actions. Namely, here we provide a model to the machine in
order to optimally exchange with its environment, by feeding it with a simplistic model
of the user (user intentions and reactions). However, we could first use Active Inference
to model the user’s learning and decision making with respect to the machine in this
specific context, and then feed such Active Inference model to the other, the machine’s
Active Inference model.

Future developments would consist in testing Active Inference online, also testing,
designing as well as applying Active Inference to other BCI context. We plan to
demonstrate it on a Motor Imagery BCI paradigm.

Overall, this approach lays ground for future co-adaptive systems. The overarching
goal is to "influence" the user through optimal machine action in order to fulfill
efficiently user’s intent. We envision that Active Inference could unify most approaches
in one adaptive BCI framework.



PART III

Contribution and Perspectives
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Chapter 7

Task Designs and Adaptive
Models

7.1 Introduction

Influencing the User through BCI Interface. Throughout this thesis we show that
we can influence users through the Interface (Task representation), or said in Active
Inference terms – machine action, to assist them in achieving higher performances,
learning, and having a better experience overall. We demonstrate such influence
through feedback bias (and briefly, through congruent sound) in a Motor Imagery task,
and through data-driven instructions and feedback in a P300-speller task.

Many factors can influence the user, from sensory events (within different modality)
of the task, to task difficulty. However when designing a BCI task, the choice of the task
representation can vary immensely (3D, 2D, continuous, congruent etc.), and does not
seem to follow some standard or guidelines. This means, it is quite uncertain which kind
of effect a task design could produce on the user and system performance.

We recently discovered a vast range of Task models in Human-Computer Interaction
(HCI). Hence, in this chapter we wish to share such knowledge, as it might come useful
for the BCI community when creating user training tasks. When considering task
representations and their implication on forming specific neurophysiological reactions,
we provide insight in perceptual affordance [Gibson, 1958], i.e. perceptual information
of an object implicitly suggesting a set of possible actions to be performed on that object.
We invite the BCI community to acknowledge various effects the task representation can
have on triggering specific actions (e.g. motor reactions) of the user. Considering
training task models and perceptual affordance from HCI, we invite readers to imagine a
BCI task standardization, so that we can better anticipate task outcomes, and be able to
compare the various BCI methods between them.

Adapting the BCI Task. Throughout this thesis we have proposed several ways to
increase performance, learning and overall experience of the user. We focused on
adapting the task difficulty to influence the user, with: 1) psychological cognitive
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theories to increase performance and state of flow (a state of immersion, control and
pleasure), see 3; 2) prediction models about the user personality traits to increase
performance and learning, see 4; 3) simple adaptive model that uses predictions about
user traits, to increase performance, see 5; and finally 3) a generic framework that
automatically adapts to user reactions, to increase both accuracy and speed, see 6.

Taking into consideration all the presented task models, our proposed taxonomy for
adaptive BCIs, and adaptive task models, we provide a new conceptual Task model. It
incorporates factors that, from our experiments showed to most influence the users
during a BCI task. Additionally, we suggest ways such factors should be adapted by, in
real-time, and using new metrics. We hope this new model would inspire the community
to create real-time adaptive models based on proposed factors. However, as the new Task
model is very hypothetical, it is presented in the Appendix 7.5, available for any curious
and imaginative reader.

Perspectives. As part of short-term perspectives, we detail all the gaps to be filled
when considering optimal influences on the user. From active inference, task congruency,
to adaptive bias model to be tested real-time, and so on.

We believe what is missing the most in this thesis is yet to show that by influencing
the user we can indeed modify the signal variability and thus increase performance. The
link between the change of signal variability and increase of performance is missing. To
evaluate this, we would need to investigate the neurophysiological data, and analyze the
EEG signal more thoroughly. This is one of the main future work investigations.

Structure. In section 7.2, we provide some guidelines for designing a BCI task.
Consequently, we hope it would inspire the BCI community to acknowledge the need for
a task standardization. In the following section 7.3, we highlight our contributions which
mainly revolve around BCI task and user models to increase performance, learning and
user experience. Finally in section 7.4, we list the immediate perspectives this thesis
opened and give our concluding words.

7.2 Standardization of BCI Task Design

The following section is about general perspectives deduced from all chapters’ perspec-
tives together. As a leit motive that repeats itself within every BCI task that we designed
and performed. We propose a BCI task standardization, by acknowledging: 1. existing
task designs from HCI, and 2. the perceptual affordance [Gibson, 1958]of a BCI user.

In order for the BCI system to work, the user generally needs to understand how to
manipulate the machine [Lotte et al., 2013]. Hence, user training started to be seriously
considered so that the user can learn to control the machine with ease and increase
performance. Human learning is often performed through the creation of mental
models of the system one interacts with. Mental models1, a concept used by cognitive
psychologists [Johnson-Laird, 1983] and HCI researchers [Norman, 2014] among others,
are internal representations of the world that humans create in order to make meaning,

1believed to originate from the book The Nature of Explanation [Craik, 1952]
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anticipate events and act to minimize anticipation error (as in Active Inference, chapter
6)2. In [Johnson-Laird and Byrne, 1991], a theory was developed assuming that the
reasoning depends, not on logical form, but on mental models.

To assure a correct formation of one’s mental model of a computer system, HCI
community proposes various task designs for user training that we describe in the
following.

7.2.1 HCI Task Designs and User Training

As computer systems have been vastly used for quite a few decades now, already by the
90’s, a large number of user training were proposed. From our understanding of the
vast literature on task design and user training, there are three main types of user
training, which use: conceptual models [Mayer, 1989], procedural models [Card, 2018]
and interacting with the system [Carroll and Mack, 1984]. These models are not to be
confounded with user mental models. Note that these models can assist in forming
mental models which enable users to perform mental actions before actually performing
them. Such kind of prediction and reasoning can increase learning, thus represent an
essential part of training.

Conceptual models represent manuals (tutorials) that provide an understanding of
the underlying processes of the system. It can contain (i) word analogies to describe a
new concept by comparing with another familiar one; or (ii) abstract descriptions, such
as charts, diagrams, e.g. an inverted tree with a root as a directory and branches for files
hierarchy, etc. [Sein et al., 1987]

Using analogies for conceptual models can form wrong mental models in novices, as
different persons might project their own experience to the metaphor, and have a wrong
action in mind when confronted with the task procedure [Borgman, 1986]. On the other
hand, abstract metaphors can be difficult to comprehend to some users, for instance for
low-visual and low-abstract persons [Sein and Bostrom, 1989].

Procedural models represent a “how-to” tutorial or task design, describing step by
step procedures to follow, in order to achieve a goal. They do not contain any information
about the system structure and its components. The most known procedural models are
GOMS (Goals, Operators, Methods, Selection rules) [Card, 2018]. To accomplish a goal,
one should choose a set of operators leading to various system states. For instance, to
copy paste a text, one needs perform a left-mouse click to select the text, then press
Ctrl-C on keyboard to copy,.. press Ctrl-V to paste, and so on. It is useful when the system
is simple to operate. Specific task instructions have shown to be better than general
instructions, as such they create less confusion. However, when it comes to transferring
knowledge to a slightly different task or confronting with errors, these models are
suboptimal [Santhanam and Sein, 1994].

Training through Interaction is to learn through trial-and-error while interacting
with the system directly. Such training models often form incomplete mental models in
novices leading to error and frustration [Carroll and Mack, 1984]. However it is an

2Note that in that chapter, we endow a “mental” model to the machine, which is a representation it can
have of the user, in order to learn and make optimal decisions. However, that computational framework is
originally made to model human decision making and learning.
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important part for enhancing existing mental models that were for instance already
created using conceptual models [Santhanam and Sein, 1994].

In [Santhanam and Sein, 1994] they explain the importance of training models for
correct mental model formation, which can assists users to reason and understand better
the behavior of the system. They show that mental models formed from conceptual
models require deduction to form specific procedures, while procedural require a high
level of abstraction to form mental models. The latter is typically much more difficult to
achieve. Also, they explain how most manuals that can be found are procedural ones, and
seem to be preferred by users as they produce rapid solutions to attain short-term goals.

BCI user training. The ability of users to understand computer systems affects the ac-
ceptance andutilization of computers [Nelson and Cheney, 1987, Thompson et al., 1991].
Itwas shown that fearof technologynegatively influences BCI performance [Jeunet et al., 2016].
It is possibly because users lack understanding of the underlying processes of a BCI. In
that sense, BCI users could benefit from conceptual models when engaged in training.

BCI user training is mostly Interactive, i.e., the user is supposed to learn through
trial-and-error. However, differently from a computer system where users perceive a
direct effect of their conscious, physical actions, BCI users have little control over their
actions and rarely create a direct link between their mental action and perceptual
observation. This often creates a mismatch in what users expect to observe and what
they actually observe, leading to a lack of sense of agency or control. Meaning that,
standard user training through interaction might not be the optimal solution for
BCI users. As mentioned above, even in HCI, such training is shown suboptimal for
novice users [Carroll and Mack, 1984]. Again, BCI training might benefit from the use of
conceptual and procedural models to first create a mental representation of a BCI system
and then enhance such representation with Interaction. In any case, the interaction
can always benefit from the use of an adaptive feedback bias that would reduce the
mismatch between what is expected and observed, and increase sense of control (as
shown in our experiments).

Potential Solutions. Conceptual models for BCI user training could contain of a
short explanatory video briefly describing the concepts and underlying mechanisms
of BCI, so that the users understand that the system directly depends on their attentional
focus, effort and motivation. Also, importantly, to reduce fear from technology, the video
must specify that a BCI is not a “mind reader”, i.e., it cannot infer one’s intelligence,
emotional stability, general health, cannot insert thoughts into one’s mind, and so on.
Furthermore, the conceptual model could contain abstract representation of ones EEG
signals in real-time, such as the usual representation within a time frequency domain, or
users could benefit from visualizing real-time neuronal connectivity on a virtual scalp
for instance [Astolfi et al., 2007].

As for procedural models, we lack clear steps to guide the user to achieve a BCI task,
that is, to achieve a successful mental command such as motor imagery for instance. For
now, we can:

• Advise users to be in certain states (cognitive, emotional and physical) that have
shown favourable for BCI performance. For instance, cognitive and emotional
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states could be the state of flow (immersion, control, motivation), high attention
and workload, while physical could be a reduced level of muscle tension and so on.
One could use simple breathing exercises that have shown to induce calm and
focus, for instance using a biofeedback support (see Appendix 7.5).

• Provide physical training on objects of choice for healthy subjects, in order to
assist in the creation and consistency of the motor command, through revoking
the memory of such somatosensory information.

• Suggest strategies that have shown to work for most users (mentally close-open
hand-palm, a kinesthetic strategy or a mental visualization of an action etc.) for
MI BCI or counting the number of flashing stimuli for P300 for instance.

• Gather informal user experience about their “feeling” of how to create mental
commands (which are often in form of analogies), and mention those experiences
(analogies) to other users. We could experiment with different types of analogies
and observe what type of users found it useful and what type did not, and whether
it increased performance.

We do not know the exact strategies that work best for each user, hence we can only
suggest all the strategies available and let the user choose the one she is most comfortable
with. Maybe we could use prediction models to find which strategy could work best
according to user skills, and suggest the strategy optimal for each user.

Notice that what is typically used for conceptual models (analogies) in HCI, we
must use within the procedural models as well. That is because phenomena such
as mental-machine commands are still rare and lack human experience, and thus a
dedicated universal category. One day these phenomena might even gain a dedicated
name, a term which once evoked would immediately produce an experience that relate
to it, as it is the case for clicking a mouse button.

7.2.2 Perceptual Affordance

Perceptual affordance [Gibson, 1958] is a theory that assumes that the mere perception
of an object leads to the “mental activation” of possible actions one could perform on this
object. For instance, an object such as a eyebrow pinch provides perceptual information
of the possible actions that can be performed on it, as picking it up and pinching it (of
course given the observer’s experience). Such perceptual information actuates in the
observer a finite set of possible actions that can be performed. In this theory perception
and action are intrinsically linked, in a continuous feedback loop. As Gibson argued,
“We must perceive in order to move, but we must also move in order to perceive”.
Every action provides feedback about the just-performed movement and generates
information that can be used for guiding the next movement [Franchak et al., 2010].

Behavioral experiments have shown that depending on the size, orientation and
location of the object, one can have different degrees of response time, and precision
when performing an action [Symes et al., 2007]. For instance, if the pinch is too small for
the size of user’s hand, or if it is closer to the non-dominant hand or oriented opposite
from the grasp, the response time is lower than if the spatial characteristics were better
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suited for that user. Furthermore, when there is fluency and ease in performing an
action, users usually attribute a pleasurable feeling opposite from a non-fluent action
which brings minor frustration [Regenberg et al., 2012].

Neuroimaging experimental studies show when passively observing manipulable
objects versus non-manipulable ones, there is stronger activation in motor cortex
as shown in fMRI [Chao and Martin, 2000], also stronger mu desynchronisation over
centro-parietal region [Proverbio, 2012]; and especially within the range of the dominant
hand versus non-dominant one [Gallivan et al., 2011, Rowe et al., 2017]. Furthermore,
higher motor evoked potentials were found during the observation of graspable objects
falling within peripersonal space (i.e., reachable within a hand grasp) compared to the
observation of either non-graspable or graspable objects falling within the extrapersonal
space (i.e., out of reach or grasp) [Cardellicchio et al., 2011]. More importantly, when
the task is to judge the distance of the object, mu desynchronization is strongest
when the objects are within the peripersonal space, and diminishes with distance
boundaries of peripersonal space, and extrapersonal space [Wamain et al., 2016]. In the
same experiment, when the observers were to focus on object identification, while
the object location was changed, interestingly, the mu desynchronization was not
modulated. This means that the object location can influence motor activation if the
observer is not focused on another task. This suggests that “the involvement of the
motor network in the processing of visual objects in peripersonal space is not automatic
but rather depends on the goal of the perceptual task” [Wamain et al., 2016].

On the other hand, observing action performed on objects produces the well-known
mirror neuron effect that activates motor neurons. Additionally, mu suppression is
showed to be significantly stronger when the observation is task-related versus when
it is not [Schuch et al., 2010]. In this experiment, subjects were presented a video of
repeated mug grasping and in one case they were to count the number of times the mug
was grasped (observation is task-related) or the number of colour changes (not task
related).

These results could explain the success of using virtual environments for motor
imagery BCI [Alimardani et al., 2014, Vourvopoulos et al., 2016] as the objects presented
were within the peripersonal space, manipulable and congruent with the MI task, i.e., the
movement imagination was related to the visual representation. Also, the objects were
easily graspable, i.e., their orientation and size were configured to suit the virtual hands.

The objects represented in a BCI task can differ in size, location (near-far space),
orientation, and congruency, without any particular verification or control of potential
effects on motor activation. This vast literature indicates that we should design BCI tasks
with caution, and that we cannot compare results between such different designs.

Experiments that study the effect of objects presented in 2D or 3D, or in continuous
movement versus as discrete apparition, are yet to be investigated. Also, the difference
in timing of apparition or speed of movement might as well have an impact, but it is to
be further researched in the literature. Typically, the feedback is continuous for MI BCI
tasks, while instructions are short and discrete. However, objects in MI tasks could
appear discretely and stay within the peripersonal space on the left or right of the
observer.
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In conclusion, we must acknowledge the fact that different BCI task representations
influence users as observers and activate different neurophysiological pathways that in
turn modify system performance.

7.2.3 Proposal of a Training and Task Design

We presented the vast literature from both HCI, and cognitive neuroscience and
psychology that support the need of a BCI task standardization (notably for MI), from
user training to task design:

1. User training should follow some structure or guidelines, using conceptual,
procedural and interaction models.

2. When designing BCI task, one should consider that the object characteristics
(spatial and temporal) and functions (e.g. congruency) can influence different
neural activation (due to perceptual affordance), and in turn produce unexpected
results.

We propose that experimenters should account for the categories in which their BCI task
designs and training protocols belong to, see figure 7.1.

Figure 7.1: A first (preliminary) proposition for task design and user training standardization. Experimenter can
choose to provide either one or a combination of the proposed trainings using conceptual (short explanatory
video or EEG signal representation real-time), procedural (how-to procedures or experiences/strategies of
others) or interaction (directly train through trial and error) models. As for task design, one should note the
object characteristics such as shape, size, orientation and location according to the subject, along with
the object function: whether it is congruent to the task, a manipulable object and if it is moving in 2 or 3
dimensional space, in a continuous or discrete manner. Note that the object can represent both feedback and
instructions.

Although, we have only provided supporting ground for the visual perceptual
affordance, this proposed standardization could apply to other modalities. For instance,
sound or haptic modality can be presented as an “object” as well, one that we can hear
or touch. The orientation and location of the sound coming from different speakers, it
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can move from one speaker to another or be static; it can present a congruent or
non-congruent sound of an action using a manipulable or non-manipulable physical
object. The sound “size” can be thought of as intensity (measured in decibels), while the
shape can be interpreted as different frequencies used, “wave shapes”.

This way, if experimenters acknowledge these categories either for user training or
task design, or both, we could more easily compare the results between such task designs
that and have for instance the same object characteristics. Moreover, such categorization
could provide a clearer expectation of the task outcomes, or less variability in the results.

7.3 Thesis Contribution

In chapter 2, we propose a taxonomy for adaptive BCIs as a conceptual framework, in
which we:

1. introduce a novel categorization of User factors (that showed important for BCI
performance in the literature) arranged by the degree of changeability in time.

2. introduce for the first time a BCI Task model necessary for achieving an adaptation
that is not only based on adjusting the system pipeline to signal variabilities, but
that enables influencing the cause of signal variabilities (the user) to increase
performance (potentially reduce if not prevent unwanted signal variabilities).

3. introduce the Interface as a representation of the Task model through which we
can adaptively influence the user, i.e., through feedback and instructions.

4. propose an intelligent agent that would choose a criterion of adaptation, be it to
favour user states or machine accuracy, and which the overall adaptation would be
based upon.

Guided by the proposed taxonomy, we first explore ways to optimally influence the user
basing our task adaptation on cognitive educational psychology. Hence, in chapter 3 we
experimentally show that we can influence the user through an adaptive biased feedback
to increase a state of flow, i.e., an optimal state of immersion, control and pleasure,
which in turn positively correlates with performance.

Promising results from chapter 3 led us to explore further the relations between user
traits, states and performance, and even learning rate in chapter 4. Again, guided by the
proposed taxonomy for adaptive BCIs, this time we wished to create a predictive model
of users that could serve as an optimization criteria that guides adaptation processes
overall. In other words, we learned what factors (what kind of feedback bias) to provide
in case we want to increase performance or learning, specific to each user profile.

Furthermore, such predictive models serve as priors fed into a simple adaptive
model for optimal bias selection, proposed in chapter 5.

Finally, in search for a computational generic framework that can incorporate all the
dynamic components of the BCI triplet (the user, the task and system pipeline), we found
that best suited for such adaptation is Active (Bayesian) Inference. In chapter 6 we
describe such generic and flexible computational framework that enables automatic
adaptation based on user reactions, and accounts for a predefined goal. Its adaptation
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consists of both perceiving the user reactions and acting upon them so to minimize
prediction error and maximize information about the user states. It is based upon
the fact that perception and action are intrinsically linked, and that to optimize
perception or inference of the user it is to optimize its action on the user. Furthermore,
its adaptation is led by a predefined goal. In our P300-speller example, we set a simple
goal being a correctly spelled letter, i.e., the criteria is to increase bit-rate. However, we
can consider any optimization criteria such as reaching a flow state for instance, by
configuring a few key parameters of Active Inference.

7.4 Perspectives

Ourwork startedwith the creation of a taxonomy for adaptive BCI, an adaptive framework
that includes most possible factors that can change or adapt in a BCI system (from the
user, task and machine decoding pipeline). In chapter 2 we highlighted the gaps yet to be
investigated in BCI that became visible with such framework. We investigated a few of
those gaps, for 2 paradigms, Motor Imagery and P300-speller. To close the cycle, we
re-present methods that we evaluated, and the gaps yet to be filled with the same
framework, see figure 7.2.

Figure 7.2: Adaptive methods that we investigated in this thesis, using the BCI adaptive framework, proposed
in 2. Highlighted in yellow are elements that were adapted, while in red are the factors that guided the
adaptation, or simply represent the context in which the adaptation took place (e.g. MI and P300-speller BCIs).

Note that the adaptation from bottom, short-time scale can take place in higher time
scales, while the higher ones are not so common to be adapted within the shorter time
scales. For instance, we have adapted the classifier parameters (mean re-centering from
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[Vidaurre et al., 2010]) within runs for instance. On the other hand, personality traits
(scores from questionnaires) will not be recalculated within runs or trials (within lower
time-scales) but rather at least within sessions. As well as, for instance the task purpose
would not change within trials or runs of a BCI session.

This framework will a new, serve for visualizing what was done (this time by us), as
well as the missing gaps yet to be filled. We denote in bold the elements that are part of
the BCI taxonomy.

First of all, we adapted the MI task difficulty through feedback bias within trials
to influence the contextual based flow state (see chapter 3). The users’ exercise
comprised of imagined hand movements to control the machine and the purpose
of the experiment was for enhancingMI user training. This purpose integrates an
optimization criteria, that is to increase system performance and user experience overall.

Second, in a simulation, we adapted the feedback task difficulty within runs to
increase performance, while taking into account user traits (see chapter 5). In order to
do so, we needed to acquire user reactions to different task difficulties (bias types)
depending on user trait, which we did in another MI experiment, in chapter 4. In this
same MI experiment, we also adapted the classifier within runs that would reduce
the EEG non-stationarity [Vidaurre et al., 2010].

Third, we adapted a P300-speller BCI task to increase both speed and accuracy (i.e.,
the criteria integrated within the communication purpose) using data-driven adaptive
generic framework – Active Inference. It adapts the number of flashing repetitions
needed for the decision to be made for spelling a letter, for each user. In this way, both
feedback (spelling) and instructions (flashing) were automatically adapted according
to short-term user reactions. In this case, the instruction “difficulty” is adapted in a
sense that the order of flashing items implicitly provided a degree of difficulty for the
user to elicit a P300 ERP. The adaptive model provided intelligent flashing to elicit such
ERP that best reveal the target letter (see 6).

7.4.1 Gaps in Adaptation

Interface.

1. We used only the visual or audio modality separately, however we could have
switched between different modalities instead of or along with the task difficulty
adaptation.

2. In MI BCI we adapted the difficulty through the feedback bias, however we could
have adapted the difficulty of instructions or interface as well, e.g. by modifying
the speed or order of instructions’ appearance, or changing the interval (pause)
between trials.

User Model.

1. We believe that the optimal user context based component (state) is the flow state,
state of immersion, control and pleasure. Hence we investigated a way to increase
it and along with it, to increase performance. We investigated as well the user
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learning and workload. However we could have focused on other states, such as
motivation, mood (valence, arousal), and attentional focus for instance.

2. We investigated user traits and their relation to performance and learning.
However, we could have investigated skills such as spatial rotation that has shown
as a strong predictor of performance [Jeunet et al., 2016], or other cognitive
abilities such as memory and attentional capacities and so on.

3. We have not investigated the user stable characteristics such as gender or age,
their relation to the change in task difficulty and task representation, or interface.

Task Model.

1. We have mostly focused on adapting the task difficulty within trials or runs.
However we could have adapted some higher time-scale elements. For instance,
we could adapt between a BCI MI and P300. If we predicted that some users would
perform better in a P300 task than in a MI one, than we would provide the same
task but within a different task strategy. Or switch between motor imagery and
mental calculations or rotations for instance.

2. Within a Motor Imagery task, we could switch between task exercises that involve
imagination of hand movement, or tongue or feet for instance.

Note that what we call the task strategy is different from the user strategy which a user
performs during the task exercise. For instance, a user can have a kinesthetic or visual
strategy to perform the exercise of imagining hand movements.

Signal Processing Pipeline.

1. We could have performed many temporal, spatial or epoching adaptations.
However in the end if we would perform such changes along with the task
difficulty it would have created too many variables, and we would not have known
the exact reason for the potential performance or learning improvements.

2. We also could have used other physiological measurements along with EEG. On
the side note, we have investigated some interesting physiological processes
(within the enteric nervous system) that could enable an easy assessment of user
emotional states (see Appendix 7.5)

7.4.2 Positioning our Task Designs within the Task Standardiza-
tion

In this chapter (in section 7.2) we present some facts about the perceptual affordance
[Gibson, 1958], that is, how the task representation can directly influence user perfor-
mance, especially motor reactions. Before knowing this, we used as task design, a game
called Tux racer that complies with the Instructional Design Theories [Keller, 1987].

We here describe it in the terms of our proposed standardization of task design (see
7.2), and denote in bold the factors of the standardization model. Tux Racer game
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provides a 3D perspective, it is continuous, i.e., the feedback is mapped to a penguin
that continuously slides through a ski course. It is not congruent with the MI task,
i.e., the users imagine left-right hand movements in order to control a penguin to
slide to the left or right, on its belly. It does not havemanipulable objects, i.e., there
are fish located on both left and right side, compensating for the negative effect of
non-dominant hand object location. We also added background music as it showed to
influence positively the state of flow and motivation (see chapter 3). The music however,
was not synchronized with the pace of the motor imagery. We additionally had sound
effects such as the sound of sliding through snow and a “bloop” when a fish was caught.
This sound was congruent to the game task but not specifically to a motor imagery or
a sound of a hand performing a realistic action; and it was synchronisedwith the
imagined movement as it was directly produced by the penguin actions (mapped from
the classifier output).

Thanks to this MI experiment, we noticed the importance of perceptual influence on
the user performance and conducted a preliminary experiment to investigate the impact
of a congruent sound on MI performance (see section 3.3). Unfortunately, we did not
have enough resources to perform this experiment as we hoped (it was conducted in a
lab that specializes in sound and not BCI, thus lacking the necessary equipment and
experience). Although preliminary, the results were quite encouraging (see 3.3.3).
We could indeed continue to investigate the importance of a congruent versus non
congruent sound. Especially with the newly acquired knowledge from the perceptual
affordance, we could design the task more rigorously, and anticipate better the outcomes
of such experiment. We could also test the visual modality in VR of a congruent feedback
and or instructions and compare it with the auditory one.

7.4.3 Improving Existing Methods

Flow. Our first simplistic task representation and difficulty adaptation method was
based on the Flow theory. We should investigate the neurophysiological correlates of
flow, and create a computational model of flow that could automatically adapt to each
user in order to increase such psychological state. In general, what is missing in our
methods is the link or relation between the task influence on the neurophysiology to the
psychological states and then system performance. Thus, we ought to perform many
physiological analyses.

Prediction Models. We have used too many factors for predicting performance and
learning, as opposed to the scarce population of subjects. We should acquire more data
that could enable us to find more interesting results, and validate our predictions on the
influence of adaptive bias, depending on user traits and states.

As a more technical matter, prediction models are not the only possible solution. We
can investigate another approach, called the Structural Equation Modeling or the SEM. It
is often used in psychology to analyze various influences between factors that cannot be
easily measured, but can be described implicitly through the use of latent variables
[Kaplan, 2008]. Its potential advantage, when compared to prediction models, is that it
can incorporate more relations and factors within one model representation.
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Adaptive Models. We have made a step further into adapting a BCI as proposed in
our taxonomy for adaptive BCIs; from simple bias adaptation from flow theory to a
data-driven adaptation that takes into account the User model components. That is, we
use the information within the user profile (traits) and their relation with feedback bias
as priors, in order to enable an accurate task adaptation within runs and increase
performance automatically. Within the model, we can choose the criteria of adaptation,
be it to increase performance, learning or flow state for instance. However, the problem
is that we use a simulation and create virtual user reactions from a changing bias
between runs. Thus, we could test our adaptive feedback bias model on new real data
online.

Active Inference. Active Inference represents a generic and flexible adaptive frame-
work that could incorporate the whole BCI adaptive taxonomy. It could be the intelligent
agent, the Conductor, that decides how, when and which element of the BCI should be
adapted.

However, we test it only in a simulated P300 context, setting a simplistic goal such as
a correctly spelled letter, with short-term user intentions as states, ERP with ErrP
reactions as observations, and actions such as flashing, spelling and switching-off.
As it is a very flexible framework it could incorporate more complex goals, states,
observations and machine actions. However, for such complex cases, the way it is
implemented (in matlab) it seems to be not optimal to be used in real-time. Nonetheless,
for now it could be easily tested online for the “simple” goals, in the presented P300
(optimal flashing and stopping) and for a MI (optimal bias) BCI task.

Furthermore, we could test whether for simple (short-term) goals, there is a
necessity for such a powerful framework such as Active Inference, or a simple adaptive
model we proposed in 5 could suffice. To answer this question, we could compare the
computational complexity and benefits between the two proposed adaptive models
on our existing simulations. For now the benefit of the simple adaptive model is
in its simplicity not only concerning data reproducibility but also for theoretical
understanding.

7.5 Conclusion

I believe that this thesis brought many novel ideas and useful perspectives on ways to
enhance BCIs. We bring a completely new point of view of how an adaptive BCI should be
improved; that is, not only through adaptive decoding methods but particularly through
adaptive influences on the user.

We have opened many potential research directions, and I personally hope that
someone will be interested in joining me in the investigation of optimal, data-driven
machine actions to improve performance, learning and user experience for each BCI user.

On a side note, I believe that in order to fully understand the user and complete the
user model, we should not only regard the brain activity, but engage in a holistic
approach that includes other physiological processes, such as breathing, heart rate,
perspiration, and especially gut contractions (see electrogastrography EGG, in appendix
7.5).
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New Task Model

This model is hypothetical, and although it has foundations in the literature, we give the
liberty to the reader to find grounding from this thesis’ findings and other scientific
links, and form their own interpretations and ideas.

Let us assume that this is a perfect recording where the noise, and variability is
minimally caused by the EEG equipment and environment, but only the user. Also, let’s
say that we know the negative, or unwanted characteristics of EEG signal on the BCI
performance and user experience. Those are, (1.) instability, i.e., a signal that varies a lot
in time; (2.) un-clearness (low Signal to Noise Ratio, SNR), i.e., if we assume the feature of
interest has a dedicated form, or wavelet, a not-clear signal would contain a lot of “other”
signal that does not match such form; and (3.) uncertainty or in-distinctiveness, i.e., low
confidence to belong to one class, low separability between classes. If we pay attention
to the terminology or language we use for describing such phenomena, we could draw a
link to the psychological phenomena that have similar effects.

• Instability, low stability of mental commands, i.e., the person alternates her
thoughts between several or two “central topics” due to low attention span,
fatigue or proneness for boredom or anxiety, for instance.

• Not a clear signal, low matching between the intended command and observed
one, i.e., the person lacks a clear intention when performing the mental command
due to low understanding, fatigue or lack of confidence (control) for instance.

• Non-separable, Indistinct signals (when including more than one command), i.e.,
the person lacks a clear differentiation (separation) between the two commands,
one be confused with the other due to lack of attentional focus, understanding
“how-to” separate one from the other, or lack of confidence again.

All these phenomena can be inter-dependent, especially the last one that can be seen as
a combination of the first two, as it includes a clear separation between two commands,
and necessitates stability or “staying” in one state (i.e., to keep performing one command
at a time). Note that we have proposed potential causes of such phenomena, such as
understanding, attention, confidence and so on. Those causes that relate to more stable
user components, they can generally, a priori influence all phenomena in the same
direction, as they will not change during the BCI task. For instance, anxiety, proneness
to boredom, fatigue and so on, they will negatively influence all three mentioned
phenomena in the same “negative direction” and keep it that way throughout the
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session. They provide a certain basis for user contextual based states, as reminder see 2.
As we assume they can not be influenced during a BCI task, we focus only on contextual
dependent states such as attentional focus and confidence (sense of control), shown
to most influence performance [Jeunet et al., 2016]. We add another contextual user
component such as task understanding, as we have shown (in 4.5) some users with low
performance calibration might benefit only from a better understanding of the task.
However, indeed if we have prior knowledge about the user traits as well, it can be
always useful for having a better starting point of user’s reactions and their evolution (as
shown in 5).

This linguistic link between psychological and physiological terms used could provide
solutions for adaptive task designs (machine actions) that influence mentioned context
dependent user states. We derive potential machine actions that could automatically
switch from one to another in order to influence the user and minimize said unwanted
signal variability, see figure 7.3.

Figure 7.3: Depending on the purpose, using new metrics based on stability, clarity and separability of mental
commands, the machine would provide adaptive action (influence) to engage, guide and match task difficulty
(bias feedback for instance) following motivational instructional designs to increase attention, understanding
and sense of control or confidence.

As proposed in Active Inference (chapter 6), depending on the goal or purpose,
this model could adapt according to user reactions that are measured through the
stability, clarity and separability of mental commands. These phenomena can be
attributed with the following metrics: (1.) stability can be measured with the form
of Riemannian standard deviation between each trial covariance matrix and the
average covariance matrix for this task [Lotte and Jeunet, 2017], or as KL divergence
between 2 probabilities of the same class through 2 consecutive time windows (as in
[Perdikis et al., 2016]) (2.) clarity can be measured using convolutions to match the
signal with the wavelet that corresponds to the mental command (wavelet learned using
dictionary learning [Hitziger et al., 2013]), or it can be measured using distinctiveness –
Riemannian distance between the average covariance matrices for each task for one
mental command, and (3.) separability between classes can be measured using the
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same distinctiveness metric [Lotte and Jeunet, 2017] or as the separability index or KL
divergence between 2 class probabilities (as in [Perdikis et al., 2016]) for instance.

Once these are measured, the machine would calculate the difference (change)
between the previous and new levels of all three metrics. Based on the machine’s
certainty of acquired information it would attribute weights (or probabilities) on the
action to be performed to influence the user (or to keep the same settings as before).
We propose 3 types of action, all performed in accordance with the motivational
instructional design theories, e.g. [Keller, 2010]:

1. Engage, by modifying (adding or reducing) immersive content (e.g. sound effects,
relaxing or exciting background music) or pauses.

2. Guide, by providing supporting cognitive material (e.g. EEG signal represented
temporally and spatially, or as network connections), or instructions/stimuli in different
modalities (e.g. tactile) to reinforce the somatosensory memory of the mental command.

3. Match difficulty, increase or decrease difficulty either by using biased feedback or
by adding/reducing obstacles, speed, target location, orientation or congruency etc.
within the Interface.

As the context based user states are inter-dependent, e.g. lack of attention is related
to the lack of understanding or control, and vice versa, thus when providing adaptive
influence (machine action), it is possible to observe unexpected reactions. For this
reason, the inter-relations between there 3 selected user states must be additionally
investigated through non-BCI experiments. First of all, what we would need is to design
rigorous experiments in which we would acquire and measure physiological correlates
to such states and their relations. For instance, we could provide unclear task goals,
and investigate whether we observe low clarity in the signal and subjective lack of
understanding; we can use distractors to make users think of another topic (thus having
2 topics in total), and then investigate if we observe low stability or an alternation
mainly between 2 centroids of data points; and we could provide 2 tasks that are very
similar to each-other, and bring confusion, and investigate whether we observe low
separability of classes.



Appendix: Validation of
Prediction Models

2nd Performance prediction model:

The Second prediction model, that contains only interaction between selected factors
and bias, that is, average_perf_centered ~ bias : (calib_baseline + competition_enjoyment +
extroversion + anxiety + toughMindedness + independence + selfControl + eduflow_basline +
nasa_baseline). Details about the fitting values, α = 1, that is a Lasso regression, with
selected λ = 0.002840229, giving a mean_error= 0.01097834, see figure 7.4.

Figure 7.4: Upper figure: Mean-Squared Error of 10 α values (10 colours). Bottom figure: Such α = 1 is selected
for which λ has minimum error; there are 2 proposed λ values (gray vertical lines) the left one giving
minimum error, and the other one is more regularized (selects less factors). Values presented above the bottom
figure are the numbers of selected factors for each λ. The model selected 11 factors.

To show the model validity, we compared to a mean error of random data, shuffled
1000 times. It is significantly better than chance, see figure 7.5.
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Figure 7.5: Histogram of mean errors. Mean squared error values (denoted as random_mses) are in x-axis. Our
model mean error (30 iterations, in red), and random mean error (1000 iterations) of which blue and green
colours represent different percentile values. The most left (lightest) green is 0.1 percentile, and we can clearly
observe our model is significantly better than chance (p<0.0001).

3rd Performance prediction model:

The Third prediction model, that contains only interaction between bias and fac-
tors divided in high-low groups, that is, average_perf_centered ~ bias : (calib_baseline +
g_competition_enjoyment + g_extroversion + g_anxiety + g_toughMindedness + g_independence +
g_selfControl). Details about the fitting values: α = 1, that is a Lasso regression, with
selected λ = 0.007805173, giving a mean error: 0.01037466, see figure 7.6.

Figure 7.6: Upper figure: Mean-Squared Error of 10 α values (10 colours). Bottom figure: Such α = 1 is selected
for which λ has minimum error; there are 2 proposed λ values (gray vertical lines) the left one giving
minimum error, and the other one is more regularized (selects less factors). Values presented above the bottom
figure are the numbers of selected factors for each λ. The model selected 12 factors.
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Figure 7.7: Histogram of mean errors. Mean squared error values (denoted as random_mses) are in x-axis. Our
model mean error (30 iterations, in red), and random mean error (1000 iterations) of which blue and green
colours represent different percentile values. The most left (lightest) green is 0.1 percentile, and we can clearly
observe our model is significantly better than chance (p<0.0001).

——————

Progress prediction model:

Parameter selections, α = 0.7437333, with penalty λ = 0.001045726, giving a mean
error: 0.003908549, see 7.8.

Figure 7.8: Upper figure: Mean-Squared Error of 10 α values (10 colours). Bottom figure: Such α = 1 is selected
for which λ has minimum error; there are 2 proposed λ values (gray vertical lines), the left one giving
minimum error, and the other one is more regularized (selects less factors). Values presented above the bottom
figure are the numbers of selected factors for each λ. The λ giving minimal error selected 18 factors.

Our model mean error is smaller then the 5th percentile of the mean error of the
random model, thus better than chance, see figure 7.9.
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Figure 7.9: Histogram of mean errors. Mean squared error values (denoted as random_mses) are in x-axis. Our
model mean error (30 iterations, in red), and random mean error (1000 iterations) of which blue and green
colours represent different percentile values (from right to left are: median, 10 percentiles, 5 percentiles, 1
percentiles and 0.1 percentiles). Our model mean error is between 5 percentiles, and 1 percentiles.



Appendix: Active Inference

Relative Entropy:

Relative entropy, also called the Kullback-Libeler divergence, DKL of 2 probability
density functions Q and P :DKL(Q‖P ) is a measure of the information gained when
one revises one’s beliefs from the prior probability distribution P to the posterior
probability distributionQ. In other words, it is the amount of information lost whenQ
is used to approximate P [Burnham and Anderson, 2002]. In applications, P typically
represents the "true" distribution of data, observations, or a precisely calculated
distribution, in our case being P (si|oi,m), given the modelm.Q typically represents
an approximation of P , or in our caseQ(si|m). In order to find a distributionQ that
is "closest" to P , we can minimize the KL divergence and compute an information
projection p∗ = arg min

p∈P
DKL(q‖p). Viewing the KL divergence as ameasure of distance

in the space of probability distributions, p∗ is the "closest" distribution to q of all
the distributions in P . However, note that the KL divergence is not a metric as it
is non-symmetric, in generalDKL(P‖Q) 6= DKL(Q‖P ), and does not satisfy the
triangle inequality. The KL divergence is always non-negativeDKL ≥ 0, and is equal to
zero if and only if the two distributions are equal. For discrete probability distributions Q
(posterior) and P (prior), KL divergence is defined to be [MacKay and Mac Kay, 2003]:

DKL(Q‖P ) = −
∑
i

Qi log
Pi
Qi

Variational distribution:

As the agent is a Bayesianmodeler, at each step itwants tomaximize themodel evidence or
minimize surprise, i.e., tominimize expectedprediction errorEQ(oτ |π)[DKL[Q(sτ |oτ , π)|Q(sτ |π)]].
To evaluate surprise is a difficult problem of exact Bayesian inference, because we
need to minimize the prediction between potentially many future states again given
many possible priors. One needs to find a bound for the marginal (i.e., integrated)
likelihood, which generally involves an intractable integral over hidden states si, i.e.,
summing out the states fromQ(si, oi). So we need approximations or a bound to
solve it (for more information, see [Blei et al., 2017]). Thus, if we add the same fixed,
variational approximate distribution Q in the surprise, we get an approximate solution
to the marginal likelihood and we get the expectation of surprise within a bound. Such
minimization of surprise is also called the variational (approximate) free energy.
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Investigating
ElectroGastroGraphy for
assessing Emotions

Abstract

Recent research in the enteric nervous system, sometimes called the second brain, has
revealed potential of the digestive system in predicting emotion. Even though people
regularly experience changes in their gastrointestinal (GI) tract which influence their
mood and behavior multiple times per day, robust measurements and wearable devices
are not quite developed for such phenomena. However, other manifestations of the
autonomic nervous system such as electrodermal activity, heart rate, and facial muscle
movement have been extensively used as measures of emotions or in biofeedback
applications, while neglecting the gut. We expose electrogastrography (EGG), i.e.,
recordings of the myoelectric activity of the GI tract, as a possible measure for inferring
human emotions. In this paper, we also wish to bring into light some fundamental
questions about emotions, which are often taken for granted in the field of Human
Computer Interaction, but are still a great debate in the fields of cognitive neuroscience
and psychology.

Introduction

Recent developments in Human Computer Interaction (HCI), and physiological and
affective computing brought to light the necessity for wearable and robust physiologi-
cal sensors. So far, using physiological sensors a person can: (1) consciously moni-
tor/regulate their bodily functions through biofeedback for well-being [McKee, 2008], (2)
(un)consciously adapt an environment or task, which can for instance increase immersion
in gaming [van de Laar et al., 2013b], or (3) consciously manipulate an external device
with only physiological (neural) activity, as in active Brain-Computer Interfaces, to
control wheelchairs or for communication for example[Wolpaw et al., 2002a]. Measures
of electrodermal activity (EDA), cardiac function, facial muscles activity, and respiration
have been used frequently to assess emotional states [Mayer and Saper, 2000]. Nowadays
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there are wearable devices developed for measuring EDA and heart rate, such as the
Empatica E4 smartwatch. Remarkably however, the gastrointestinal system has often
been neglected by affective research. Even though humans regularly experience having
a "gut feeling" or "butterflies in the stomach", they often overlook the importance of
such phenomenon as an actual physiological process. However, studies have shown that
indeed the gut could have an important role in affective disorders [Bennett et al., 1998].
Still, non-invasive, robust physiological measurements or wearable devices for such
phenomena are not yet developed. The possibility of assisting users in regulating the
internal processes of the gut, and thus regulating the emotions that arise with such
physiological processes are not yet taken seriously into consideration.

In this paper we briefly explain what the gut signal is, and the usefulness of such
modality for inferring and regulating emotions, using a biofeedback. We also tackle
some fundamental questions about emotions which are often taken lightly in the HCI
community.

Gastro-Intestinal tract

The gastro-intestinal (GI) tract comprises of the mouth, esophagus, stomach and
intestines. The GI tract has a bidirectional communication with the Central Nervous
System (CNS) through the sympathetic and parasympathetic systems [Sudo et al., 2004],
thus researchers often refer to the gut-brain axis. The GI tract is governed by the enteric
nervous system which can act independently from the CNS and contains over 500
million nerves, which is why it is also called the "second brain". Moreover, today there
has been many interest in the gut microbiota or microorganisms that inhabit the gut
and have shown to have a role in the stress regulation in mice [Sudo et al., 2004].

The electrogastrogram (EGG) is a reliable and noninvasivemethod of recording gastric
myoelectrical activity [Nelsen and Kohatsu, 1968]. The gastric myoelectrical activity
paces the contraction of the stomach. The normal frequency of the electrogastric wave is
3 cycles per minute (cpm), and is termed normogastria [Koch and Stern, 2004]. It is
worth nothing that amplifiers typically used for electroencephalography (assessing brain
activity) have shown to be equally useful for EGG, for example in [Gharibans et al., 2018]
using an affordable and open-source device, OpenBCI. Recent studies showed that EGG
could be a valuable measure of emotion [Vianna and Tranel, 2006]. Individuals often
report a "nervous stomach" for too frequent contractions (tachygastria, 4-9 cpm)
during stressful experiences [Vujic, 2018]. Participants reacted with tachygastria during
horror movies, but a reduced frequency of gastric waves during a relaxation session
[Yin et al., 2004]. It is also shown that gastric slow waves can be useful for predicting the
experience of disgust [Harrison et al., 2010].

Individuals clearly react emotionally with their gut, as well as the gut influences
their emotions. As such, we advocate that it could be interesting to propose biofeedback
specifically aimed at regulating a "nervous stomach".
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Biofeedback for gut awareness

Biofeedback is a system that externalizes one’s internal bodily activity, for example
in visual, audio or haptic modalities. It assists people to be aware of their internal
processes or physiological activity, as a technique of interoception, known to be
beneficial for well-being [Farb et al., 2015]. Notice that biofeedback is built under the
assumption that being aware of one’s physiological processes creates or modulates an
emotion. In other words, the perception of physiological changes contributes to the
content of conscious experiences of emotion [Tsuchiya and Adolphs, 2007]. Biofeedback
thus externalizes such phenomena and enables people to consciously examine and
regulate their internal states and their experience of emotions. As the gut clearly has an
important role in human emotion, we believe it could be beneficial to build an EGG
wearable device which could record and process feedback to one’s gut contractions, as
depicted in Figure 7.10. Interestingly, the use of biofeedback could also expose the
relationship between experiencing bodily activity and experiencing an emotion. In
experiments where people are given a fake biofeedback to manipulate their emotions
toward images of individuals, the perception of external audio stimuli dominated over
their autonomic perception [Woll and McFall, 1979]. This leads us to ask whether the
perceived physiological process is more important than the actual one.

Figure 7.10: Depiction of a potential gut biofeedback for regulating emotion through various modalities out of
which we expose audio, visual and haptic. The electrode positioning is from [Gharibans et al., 2018].

Relation between physiology and emotion

Sympathetic nervous system, governing the fight or flight mechanisms, influences sweat
secretion, increases heart rate, constricts blood vessels in gastrointestinal organs
or inhibits contractions in the digestive tract, and much more. These physiological
changes are recognized as measures of emotion and expressed as stress, anxiety, fear etc.
This assumption follows the James’ theory [James, 1884] in which feeling (emotion
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experience) exists due to physiological changes in one’s own body. James argued
that seeing a fearful stimulus would first trigger emotional responses (increases in
sympathetic activity), and that the perception of these physiological changes would
form the basis for our conscious experience of emotion. Today, in affective neuroscience,
the James theory is revised and updated, e.g. acknowledging the role of emotions in
decision-making [Bechara et al., 2000]; or distinguishing "the conscious experience of an
emotion (feeling), its expression (physiological response), and semantic knowledge about
it (recognition)" [Tsuchiya and Adolphs, 2007]. Taking more often into consideration
the role of the GI tract might help to reconcile antagonist views of emotion. For example,
in [Johnsen et al., 2009] authors described the dissociation between the autonomic
response and affect through the study of patients with brain lesions. In this experiment,
patients without automonic responses would not sweat but would still be able to
experience emotions related to music excerpts, while patients with different lesions,
incapable of judging music, displayed EDA responses. As such, without a link between
physiology and emotions, authors "opposed" James’ theory. Nevertheless, we believe, as
the enteric nervous system can function independently from the autonomic system, it
could be that the physiology still contributed to the emotional perception of music.

Conclusion

With this paper we hope to foster discussions among HCI practitioners about the study
of gut signals. To discover further how the body contributes to the experience of
emotion and vice versa, it can be useful to include EGG as an additional tool for emotion
recognition. Also, affordable and mobile biosignal amplifiers could enable the creation of
a new biofeedback mechanism, in which individuals could learn how to regulate their
emotion related to the gut.



Dishimo: Anchoring Our Breath

Figure 7.11: Dishimo: an ambient and shared biofeedback about heart rate variability.

Abstract

We present a system that raises awareness about users’ inner state. Dishimo is a
multimodal ambient display that provides feedback about one’s stress level, which is
assessed through heart rate monitoring. Upon detecting a low heart rate variability for a
prolonged period of time, Dishimo plays an audio track, setting the pace of a regular and
deep breathing. Users can then choose to take a moment to focus on their breath. By
doing so, they will activate the Dishimo devices belonging to their close ones, who can
then join for a shared relaxation session.

Introduction

Over the last decades, the increasing availability of physiological sensors enabled new
ways to mediate with the body. In human-computer interaction, while physiological
activity has been used as another explicit input modality, researchers also investigated
how presenting biofeedback to users could alter self-awareness and prompt for better
habits. In [Moraveji et al., 2011], a widget on a desktop computer was used to help people
breathe better. This feedback was effective, but was occurring somehow intrusively,
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and the locus of attention was still on a computer device. Recent works such as
[Roo et al., 2017] have started to explore how an ambient display with multimodal
biofeedback could leverage physiological sensors to propose a calm experience focus
on the body. In the present work, we take this idea further, incorporating real-time
monitoring and exploring how a cluster of users can become an incentive for relaxation.

Dishimo (“we breathe” in Slavic languages) is a portable device that acts as a gentle
and ambient reminder of one’s state. It can be used not only to regulate oneself over the
course of the day by breathing exercises, but several devices can be connected remotely
in order to display those relaxation sessions to close ones.

We contribute to the field by leveraging behavior change with an ambient biofeedback
which can be shared among a cluster. Not only the manifestation that a close one is using
Dishimo could be an incentive to use the device and increase self-awareness, but joining
a relaxation session could create an alternate way to empathize with other, by sharing
explicitly physiological activity.

Scenario

When used in conjunction with a smartwatch capable of measuring heart rate, it will
sense a decrease in heart rate variability (HRV) as a sign of stress or cognitive workload
[Fairclough and Houston, 2004]. After a certain period of time, if the HRV does not
improve, Dishimo will play a sound as a gentle reminder to breathe. The user can then
choose to take a break from the current task and use Dishimo to focus on breathing for
his or her well-being. They can also choose to ignore it, in which case Dishimo will
automatically stop playing the sound. If the person’s state does not improve, after a little
while, the sound will resume. In cases where users do not wear a heart rate sensor, the
device could be connected to a computer and be triggered when the user stares at the
monitor for too long.

If users decide to take a break and grasp Dishimo, the device illuminates itself and the
sound will fade to let them breathe at their own pace. Then, if they manage to regulate
their breathing and increase their HRV, physical particles embedded inside Dishimo will
start to flutter and produce harmonious tones when hitting the enclosure. This later
feedback serves as a physical manifestation of cardiac coherence, a state known to be
correlated with well-being [McCraty et al., 2009]. In future version, the device itself can
be equipped with sensors to monitor heart rate by the mean of electrocardiography
(ECG) when users grasp its edges.

During the demonstration, we propose to show how several devices could be used to
orchestrate a co-located relaxation session. Up to 3 attendees will be able to use Dishimo.
Their heart rate will be monitored, either by being equipped with a smartwatch or by
direct contact with the device. Then, guided through audio with the modulation of a pink
noise, within a couple minutes they will increase their HRV. Should an attendee manage
to reach this state, their particles will flutter. Should all attendees increase HRV, the light
of each device will brighten, an indicator of synchronization and shared relaxation.



Dishimo: Anchoring Our Breath 189

Description of the system

Dishimo possesses two main features: it can sense the user and provide for a multi-modal
feedback through light, sounds, and the actuation of physical particles. The bottom
part of the device comprises its electronic components: an Adafruit Feather with a
custom shield to power a speaker and detect when a user is grasping the device through
capacitive touch – a conductive thread being woven around the edges (Figure 7.5).
A step-up voltage regulator is also present in order to power up a 12V fan (Noctua
NF-A8/R8 PWM) which is enclosed in the center of the device.

Figure 7.12: Dishimo Schematics: multimodal feedback is provided via sound, light, and fluttering particles.

The upper part of the device embeds LEDs (Adafruit Jewel) and a dome to diffuse
their light. The upper section also serves as a “chamber” where particles can bounce
when the fan is activated. Those particles are made of expanded polystyrene (Storopack
Pelaspan). While they were meant to fill boxes and protect goods, they are light enough
to fly with a modest airflow (from≈ 34.8m3/h) and, more importantly, because of their
material and shape, they happen to create a nice sound when they hit a surface, a sound
reminiscent of wooden wind chimes. To provide for another sort of biofeedback, that is
the manifestation of air flowing, is one of the core design idea of the project. The device
underwent several iterations in order to find the right combination of shape and
material in order to accommodate this particular type of feedback, which is triggered
once HRV increases (Figure 7.13).

The Adafruit Feather board can connect to a host computer through Bluetooth BLE
in order to retrieve HRV when the user is wearing a device capable of measuring heart
rate, such as the Mio Alpha 2 (used in the current prototype). It can also be paired with
an OpenBCI board, an amplifier dedicated to the recording of physiological signals such
as ECG. The OpenBCI board fits inside the device and is sensitive enough to measure ECG
upon contact with the conductive material placed around the edges of Dishimo, which
then serve as electrodes connected through a bipolar montage.
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Whenever measurements are made continuously with a smartwatch or discreetly
with the OpenBCI board, signals are processed in real-time on a host computer running
OpenViBE. To asses HRV, we measure the range of instantaneous heart rate over a
15s sliding time window, with thresholdsHRVlow < 2 beats/min andHRVhigh > 5
beats/min. Upon detection of a low HRV for 10m, the breathing guide played through the
speaker is a modulated pink noise, as in [Roo et al., 2017], which reminds of the sound of
waves. The synthesized breathing is ample and slow enough to induce an increase
in HRV, with a frequency of 7.5 breaths per minute. We also used the results from
[Frey et al., 2018] and increased the amount of time spent exhaled since such breathing
feature was associated with positive emotions. The resulting sequence is 3 1

3s breathe in,
3 1

3s breathe out and finally a pause of 1 1
3s, that is repeated to form the guiding pattern.

The audio guide is played for 30s (4 breaths), after which the device will go silent.
The volume of the audio guide is low enough so as not to compete with the attention
level of users, avoiding being a push notification which would disturb them. It is
eventually up to the user to decide whether they want to take a break or not. If they
decide to use the device, upon grabbing, the audio guide will play again for 30s. It is not
played continuously as the synthesized pattern only serves as example, and each user
might have a slightly different pace of breathing.

Figure 7.13: Various iterations were necessary in order to find a material which would be pleasing to hold
(wood vs plastic), a structure that lets enough air flow toward the particles, and a shape which would create
harmonious sound when the latter are fluttering (faces vs curves).

When the device is touched, it is formally activated and it lights up with a color
previously picked by the user. Among a cluster of users, the color of active users are
mixed together (average of each RGB channel). The global brightness of the light
is mapped to the ratio of active users who increased their HRV. In order to be as
non-judgmental as possible, we purposely avoided to give information about who
specifically reached a higher HRV. Dishimo is not meant to foster competition, that
would defeat the purpose of improving well-being, instead it is an aid and a mediator.
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