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The inventory routing problem (IRP) deals with the study of the inter-relationship between two important
activities in the supply chain: transportation of commodities and inventory management. In this paper,
we study a variant of the multi-product IRP and we propose a general variable neighbourhood search
metaheuristic for solving it. We present several neighbourhood structures based on the movement of
quantities between routes and periods. Computational experiments show the efficiency of the proposed
metaheuristic when compared with the state-of-the-art based on variable neighbourhood search.
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1. Introduction

During the last decades the operational research community has considered many optimization problems
to bring efficient solutions to companies in order to maintain and to improve their competitiveness. This
is, in particular, the case in the context of the supply chain management in which several activities can
be identified. Practical problems incorporate more and more practical constraints encountered in the
industry. In this work, we consider the combination of inventory and routing activities. As mentioned
in some recent papers (Andersson et al., 2010; Moin & Salhi, 2007), decisions related to inventory
management and routing are critical issues when optimizing the supply chain, and this problematic can
be considered as a rich and important field in itself in Andersson et al. (2010).

Generally speaking, the inventory routing problem (IRP) is a multi-period integrated distribution
problem, in which three (inter-related) kinds of decision can be listed as showed in Coelho et al. (2012)
and in Michel & Vanderbeck (2012): decide when a given customer will be visited during the planning
horizon; decide the quantity to deliver (or picked-up) to a given customer; decide the routes of the
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vehicles for every period. Therefore, the IRP combines a vehicle routing problem, where the vehicle
routes to visit customers or suppliers must be determined, and an inventory problem, concerning the
management of the quantities of product to deliver or to collect. The objective is typically to minimize
the transportation and the inventory costs over the planning horizon.

In this paper, we consider a variant of the multi-product version of the IRP with multiple suppliers
and only one customer (many-to-one structure). This problem was originally introduced by Lee et al.
(2003), and it was considered more recently by Moin et al. (2010). It can be viewed as a (part-supply)
network composed by a depot, an assembly plant and a set of suppliers where each supplier provides a
distinct product to the assembly plant. Formally, the situation can be represented by a complete graph
G= (V , A), where the set of nodes V =N ∪ {0, n+ 1} is composed by the depot (node (0)), the set
N = {1, . . . , n} of suppliers and the assembly plant (node (n+ 1)). The set A of arcs is defined by:
A= {(j, j′) : j, j′ ∈ V × V }. A travelling cost cjj′ is associated with each arc (j, j′) ∈ A.

The planning horizon T is finite and it can be divided into τ time periods: T = {1, . . . , τ }. As men-
tioned previously, each supplier i ∈N provides a unique product requested by the assembly plant. In the
following, we will denote by i a supplier or the corresponding product. The demand of the assembly
plant for a given product i at a given period t ∈ T is noted dit. It is deterministic but variable over time.
In the problem, it is assumed that products are ready at the supplier when a vehicle arrive. In addition,
an inventory cost at the assembly plant is associated with each product i ∈N and it is noted hi. How-
ever, no inventory cost are considered at the suppliers. To ensure the deliveries, an unlimited fleet of
homogeneous vehicles with a capacity C is available. The vehicles are localized at the depot and collect
the products from suppliers. After delivering the products at the assembly plant, the vehicles return to
the depot. It can be observed that a supplier can be visited by more than one vehicle in a given period
(split pick up). In addition, no backorder is allowed since it leads to excessive costs. The objective of the
problem is to minimize the total costs to ensure the production at the assembly plant. More precisely,
the objective integrates three different costs: the total holding cost hi of the product i at the assembly
plant, the total travelling cost cjj′ by the vehicles during the period and an additional fixed cost noted F
for using one vehicle in one period.

In this paper, we show the efficiency of the new neighbourhood structures used within general
variable neighbourhood search (GVNS). It is assumed that the demand is taken in full or not at all.
That corresponds, in fact, to a discretization of the continuous demand variable used in insertion and in
exchange moves. It appears that our new GVNS outperform the recent VNS-based heuristic that could
be considered as state-of-the-art for the multi-product IRP (see Mjirda et al., 2013).

The rest of the paper is organized as follows. In Section 2, we present some related works concerned
with the study of the IRP in general and to this variant in particular. Then, we provide, in Section 3, a
description for the discrete quantity management and the proposed neighbourhood structures. Next, in
Section 4, we describe our GVNS. Section 5 provides the numerical results, whereas Section 6 reports
some conclusions and future works.

2. Related works

Some recent surveys on the IRP can be found in the literature (see Andersson et al., 2010; Coelho
et al., 2012; Moin & Salhi, 2007). In these papers, the authors propose different classifications of the
IRP variants according to different criteria, in particular the time horizon, the inventory policy, the fleet
composition and size, the number of products, and so on. In particular, Coelho et al. (2012) propose the
classification of the variants according to the time at which information on demand becomes known.
With this criterion they distinguish the deterministic IRP in which the information is fully available to
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the decision maker from the stochastic IRP in which its probability distribution is known and from the
dynamic IRP in which information is not fully known in advance, but is gradually revealed over time.

One of the first publication on the IRP is due to Bell et al. (1983). They consider a problem of
industrial gases distribution with a finite time horizon and stochastic demand. To solve their problem
they use knowledge about the number of customers that are normally visited on a route. This hypothesis
simplifies the problem. They propose a branch-and-bound in which they use a Lagrangian relaxation.
Some other papers related to the industrial gases distribution can be listed. For instance, Golden et al.
(1984) consider a problem of propane distribution for a company with 3,000 customers and a stochastic
demand. The aim of this work was to improve the planning system used by the company, which provides
the next dates of visits based on the delivery history and the consumption estimation. They propose
heuristic approaches to determine which customers to visit based on their degree of urgency. Then, the
routes are determined by using the Clarke & Wright heuristic proposed by Clarke & Wright (1964).
The obtained routes are associated to a set of vehicles and a bin-packing problem is solved. Campbell
& Savelsbergh (2004) consider a deterministic variant for which they proposed a greedy randomized
adaptive search procedure. Their approach is also based on the building of clusters of customers that
can be served efficiently by a single vehicle. Then, they use these clusters to determine the quantities to
deliver thanks to an allocation problem.

If we consider the applications of the IRP, we can also distinguish maritime applications and road-
based applications. An overview on IRPs specifically dedicated to maritime applications can be found in
Christiansen et al. (2007). Another recent review paper dedicated to shipping and routing in general and
to maritime IRPs can also be found in Christiansen et al. (2013). Recent contributions in this particular
area includes the works of Christiansen & Nygreen (2005), Stalhane et al. (2012), Hewitt et al. (2013)
or Song & Furman (2013) among others. In Christiansen & Nygreen (2005), the authors introduce time
window constraints in a combined ship scheduling and inventory management problem to deal with
uncertainties in sailing time and time consumption at ports. They propose a column generation method
to solve the problem. Stalhane et al. (2012) consider a large-scale liquefied natural gas ship routing
and inventory model. They develop a multi-start local search heuristic providing solutions that are
improved using a first-descent neighbourhood search and a branch-and-bound. In Hewitt et al. (2013),
the authors propose a formulation of the maritime IRP with the aim to speed up the search for high-
quality primal solutions in a branch-and-price framework. They also introduce specific local search
techniques to enhance the process. Finally, in Song & Furman (2013), the authors introduce a flexible
arc flow model and they propose an algorithmic framework to solve it by defining subproblems that are
restricted versions of the original problem, by branch-and-cut. The subproblems are solved iteratively
in a large neighbourhood search heuristic.

If we consider non-maritime applications, we can also found many references in the literature. For
instance, Bard et al. (1998) present an IRP with satellite facilities that correspond to intermediate nodes
where vehicles can pick up products. A route for each vehicle starts at the depot, visits a set of customers
and when the vehicle is empty, it visits a facility in order to collect products. The solution of the problem
is achieved in two phases. In the first phase, they group the customers to be visited during the planning
horizon into clusters and in the second phase, they propose a local search method to solve a vehicle rout-
ing problem with satellite facilities. Bertazzi et al. (2002) analyse and compare two variants of the IRP
with different objective functions: the minimization of the transportation cost and/or the holding cost
into the retailer and/or into suppliers. They use a heuristic for a simplified problem with a single vehicle
and a single product. As observed in Andersson et al. (2010), the first papers on the IRP with road-
based applications and considering arc flow formulations were more recent. In particular, Savelsvergh
& Song (2007, 2008) introduce the IRP with continuous moves. In this variant, some customers cannot

 at E
rciyes U

niversity on D
ecem

ber 29, 2014
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/


4 of 16 A. MJIRDA ET AL.

be served using out-and-back tours, and some routes cannot be done in only 1 day. The authors propose
three heuristics in Savelsvergh & Song (2007) that define the routes and the quantities to deliver. They
also propose mixed integer programming (MIP) model in order to refine the quantities to deliver. Then,
they propose in Savelsvergh & Song (2008) a multi-commodity flow model on which they applied some
reductions, and a branch-and-cut framework to improve the previous results.

In this paper, we consider variable neighbourhood search (VNS) introduced in Mladenović &
Hansen (1997) to solve a multi-product IRP. VNS is a metaheuristic based on the systematic explo-
ration of different neighbourhood structures, within a local search routine (see Hansen et al., 2010).
VNS consist of a stochastic part (the shaking phase) and a deterministic part (the Local Search). It
combines three basic steps: a local search phase to converge to efficient solutions, a shaking phase in
order to escape from local optima visited during the search and an evaluation phase. VNS has already
been applied for solving many hard optimization problems such as parallel machine scheduling problem
(Rocha de Paula et al., 2007), location and routing problem (Jarboui et al., 2013), etc.

Some versions of IRP were already solved by VNS. For instance, Hemmelmayr et al. (2009) con-
sider a version of the problem modelled as a periodic vehicle routing problem and they propose a VNS
algorithm to solve it. Recently, Popovic et al. (2012) considered a problem of fuel distribution with a
multi-compartment fleet of vehicles. In this problem, different types of fuel are delivered to a set of cus-
tomers by vehicles with compartments. They propose a VNS to solve the problem since the proposed
MIP model could only handle the smallest instance. Vidovic et al. (2014) extended the previous work
by considering a second formulation when including the fleet size costs. Then, they propose two vari-
able neighbourhood descent (VND) algorithms based on a local intra-period neighbourhood search and
a large inter-period neighbourhood search. The results show that the heuristics produce high solution
quality with in average <7% higher total costs compared with the optimal solution.

Lee et al. (2003) proposed a MIP model for the variant of IRP considered in this paper, and they
developed a hybrid method combining an annealing-based heuristic to generate alternative sets of routes
and a linear programme to determine the corresponding optimum inventory levels. Moin et al. (2010)
derived lower and upper bounds for the problem after solving a MIP formulation with the purpose solver
CPLEX. Then, they designed a genetic algorithms to obtain better upper bounds. Recently, Mjirda et al.
(2013) proposed a two phase approach based on VNS to solve the problem. In the first phase, VNS is
used to solve a capacitated vehicle routing problem at each period to find an initial solution without
taking into account the inventory. Then, they improved the solution with a VND and a VNS algorithm
and by taking into account both transportation and inventory costs. Computational experiments showed
the efficiency of the approach compared with Moin et al. (2010). In particular, the proposed algorithms
provide solutions with a better total cost for all the instances. One of the drawback in this approach is
the running time needed to obtain the best solution for some instances. That can be partly explained
by the use of an inventory management heuristic developed to determine the quantity of products to be
collected. This heuristic is called at each solution move in the VND approach (see Mjirda et al., 2013
for more details). To avoid this problem, we propose in this paper a new VNS algorithm with a different
solution representation. This representation will be described in the following section.

3. Solution representation and neighbourhood structures

3.1 Solution representation

To deal with the problem, we decompose a solution in a set of τ sub or partial solutions S = {S1, . . . , Sτ }.
Each partial solution St is associated with the corresponding period t ∈ T . Then, for a given period t,
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Fig. 1. Solution representation.

the partial solution St is decomposed into a set of routes St = {St1 , . . . , Stm(t)}, where m(t) is the number
of vehicles used during the period t (since one route is associated with one vehicle). A third level of
decomposition is used to represent the sequence of k suppliers visited by a given vehicle v at period t,
Stv = {i1, . . . , ik}. To build the inventory routing policy corresponding to a given solution S, we need to
have the information related to the quantity of product to collect from each supplier at each period. For
each supplier i ∈ Stv , let dt

v(i) be the quantity to collect at period t by vehicle v. Figure 1 illustrates the
solution representation used in this work.

3.2 Discrete management of the quantities to collect

An important element of the solution is the determination of quantities to collect. In related works
dealing with this problem (Lee et al., 2003; Moin et al., 2010; Mjirda et al., 2013), authors manage
the quantities dt

v(i) as continuous variables, which means that, for a given period t, the amount to be
collected from a given supplier i is a part of the assembly plant’s demand. In this paper, we consider the
quantities as integer variables. More precisely, if a supplier is visited at a period h, then the complete
demand of the assembly plant at this period, dh, is collected. We introduce the discrete variable yih,
which is defined as

yih =
{

1 if supplier i is visited at period h

0 otherwise

Then, the quantity dt
v(i), for i ∈ Stv , is determined as follows:

dt
v(i)=

T∑
h=t

dihyih (3.1)

The previous definition of dt
v(i) implies that the corresponding vehicle v can collect quantities of

product from supplier i associated with period later than the current one t. However, an important
point is the fact that, for a given period h ∈ [t, T], the vehicle collects all the product associated with
the demand dih or it does not collect the product for this period. This brings that we only manage
discrete quantities of products in a given solution S. A consequence of this management of demand is
the possible generation of empty routes.
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Legend : 

Horizon T ={1, 2, 3}

Fig. 2. Illustration of an empty partial solution.

Example We consider an example with three suppliers, three periods (T = {1, 2, 3}) and only one vehi-
cle. Suppose that in Period 1 the vehicle visits the three suppliers. Then, the partial solution for the first
period can be defined as: S11 = {1, 2, 3}. Suppose that during this route the vehicle collects the quantity of
product associated with demand d1,1 from Supplier 1 (d1

1 (1)= d1,1), all the quantity of product requested
from Supplier 2 (i.e d1

1 (2)= d2,1 + d2,2 + d2,3) and the quantity of product for the first period from Sup-
plier 3 (d1

1 (3)= d3,1). Then, suppose that the vehicle collects the required demand for Period 2 and 3
from Suppliers 1 and 3 in the second period. In that case, we have S2,1 = {1, 3} and d2

1 (1)= d1,2 + d1,3,
d2

1 (3)= d3,2 + d3,3. It is easy to observe that all the required products were collected during the first two
periods, which means that for Period 3 there is no routes, S3,1 =∅. This example is illustrated in Fig. 2.

As mentioned above, the solution representation defined in this paper allows us to define moves
based on quantities’ modifications without the need of a heuristic (or a mathematical model) to readjust
these quantities in the solution. We present the neighbourhood structures used in our VNS algorithm in
the next section.

3.3 Neighbourhood structures

We define six neighbourhood structures based on the movement of quantities between routes and
periods. These neighbourhood structures can be decomposed into two categories: insertion move and
exchange move, and they are described in the following.

3.3.1 Insertion neighbourhood N1 We define three neighbourhood structures based on an insertion
move. They may concern just one route or two routes of the same period or two routes of different
periods.

Insertion move in the same route (shift neighbourhood) N1,1
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Fig. 3. Insertion move in the same route (shift neighbourhood) N1,1.

The shift neighbourhood structure consists of changing the order in which quantities are collected
from suppliers in one route. This move corresponds to the shift of a supplier from its current position to
a new position. This is a classical move used for routing problems and it is referred as 1-0 move (i.e.,
supplier relocation). This simple move is illustrated in Fig. 3. In this figure and in the following ones,
we present examples of routes and tables that resume the suppliers to be visited in the row denoted
by Routes, the Quantities to collect from the corresponding suppliers of a route and the corresponding
Periods. To illustrate these, we can consider the route in Fig. 3 obtained after the move. In this route,
the vehicle visits the Suppliers 1, 2, . . . , 6. Then, it goes to the assembly plant before going back to the
depot. At Supplier 1, the vehicle collects 2 unit of product corresponding to the Period 1 and 1 unit of
product at the Period 3.

We can observe that this move modifies only the transportation cost of the current solution.

Insertion move between two routes from the same period N1,2

The insertion move between two routes concerns the movement of a quantity to collect from one
route to another route of the same period. Two cases can be considered:

• The supplier already exists in the route in which the insertion is done. In that case the quantity to
be inserted has to be merged with the quantities already planned to be collected from this supplier.
Figure 4 summarizes this case. In this example, the quantity of product collected from Supplier 3
originally in the route of Vehicle 2 is moved to the route of Vehicle 1. After the move the Customer
3 does not appear in the second route (i.e. d1

2 (3)= 0), whereas the quantity of product associated
with Periods 1 and 2 is collected by Vehicle 1 (i.e. d1

1 (3)= d3,1 + d3,2 = 6).

• The supplier does not exist in the route of insertion which means that the insertion of a quantity is
equivalent to the insertion of a new supplier in this route, as illustrated in Fig. 5. In this example,
the Supplier 6 is moved from the second route to the first one.

Insertion move between two routes in different periods N1,3
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Fig. 4. Case 1 of insertion move N1,2 (Supplier 3).

Fig. 5. Case 2 of insertion move N1,2 (Supplier 6).

The third neighbourhood consists of inserting a quantity from a route to another route in a different
period. As in N1,2 if the supplier exists in the route, quantities will be jointed. Otherwise, the insertion
of a quantity means the insertion of a new supplier in the route.
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Fig. 6. Exchange move in one route N2,1 (Suppliers 2 and 5).

3.3.2 Exchange neighbourhood N2 We define three neighbourhood structures based on the exchange
of quantities on a given route, between two routes at the same period, or between two routes at different
periods.

Exchange move within the same route N2,1

This neighbourhood consists in exchanging the position of two quantities to collect from two dif-
ferent suppliers in the same route. Then, it is equivalent to exchange the order of visiting suppliers in
one route. A 2-opt move can be performed for some special cases during the execution of this move.
An example is given in Fig. 6.

Exchange move between two routes N2,2

With this move we exchange the quantities to collect from two suppliers on two distinct routes at
the same period. Like previously for the insertion move, two cases can be discussed:

• If the suppliers are only present in their initial route (and not in the route associated with the move),
then the move is a classical exchange between two suppliers. This is a common move on routing
problem and it is referred as 1-1 exchange move. Figure 7 provides an illustration with the exchange
of Customers 3 and 5.

• If at least one of the two suppliers is already present in the route associated with the move, then the
quantities to move will be jointed together. Figure 8 illustrates this situation for Suppliers 3 and 5.
After the move, Supplier 3 is only in the second route and the quantity collected by the vehicle is
d1

2 (3)= d3,1 + d3,2 (assuming we are in Period 1).

Exchange move between two routes from different periods N2,3

This neighbourhood structure is a generalization of the previous neighbourhood N2,2, but it concerns
routes from different periods.
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Fig. 7. Case 1 of exchange move N2,2 (Suppliers 3 and 5).

Fig. 8. Case 2 of exchange move N2,2 (Suppliers 3 and 5).
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4. A GVNS for the IRP

To solve the considered IRP, we apply a general VNS (GVNS) metaheuristic that uses a VND as a local
search routine.

The VND algorithm is a deterministic variant of VNS. To describe this algorithm, we first define a
local search algorithm denoted by LSN(S, Ni,1, Ni,2, Ni,3), where S is the initial solution, and Ni,1, Ni,2

and Ni,3 are three different neighbourhood structures for each i ∈ {1, 2}. This algorithm is a descent
method and it is used in our VND. In the LSN algorithm, we explore consecutively the neighbourhoods
Ni,1, Ni,2 and Ni,3 around the current solution until no improvement is possible, for a given i ∈ {1, 2}.

Algorithm 1: LSN(S, Ni,1, Ni,2, Ni,3)

repeat
S1← Local Search(S, Ni,1);
S2← Local Search(S1, Ni,2);
S3← Local Search(S2, Ni,3);
Δ= f (S3)− f (S);
if Δ < 0 then

S← S3;
end

until Δ � 0
return S;

Next, we define the VND algorithm denoted by VND(S,Nset1,Nset2), where S is the initial solution
and Nset1 = {N1,1, N1,2, N1,3} is the set of neighbourhood structures based on insertion moves and Nset2 =
{N2,1, N2,2, N2,3} is the set of neighbourhood structures using exchange moves. This algorithm can be
considered as a variant of the classical VND. More precisely, LSN is a deterministic descent method.
It is used as a subroutine within VND to explore both the insertion and the exchange neighbourhood
structures. The VND stops when no improvement is possible. The different steps of our VND algorithm
are described in Algorithm 2.

Algorithm 2: VND(S,Nset1,Nset2)

repeat
S1← LSN(S, N1,1, N1,2, N1,3);
S2← LSN(S1, N2,1, N2,2, N2,3);
Δ= f (S2)− f (S);
if Δ < 0 then

S← S2;
end

until Δ � 0
return S;

Our GVNS uses the previous VND as a local search subroutine which is the main difference with
the basic VNS. An important issue related to our GVNS is the shaking phase. It is based on the insertion
neighbourhood structures N1,q, for q ∈ {1, 2, 3}. More precisely, at each iteration of the search we choose
the neighbourhood to shake randomly between N1,1, N1,2 and N1,3. Then, for a given neighbourhood N1,q,
we apply a shaking phase k times (1 � k � kmax). We introduce the notation N [k] to denote k consecutive
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uses of the neighbourhood N . The multiple use of a given neighbourhood in the shaking phase can be
considered as a difference with the basic VNS. When the shaking phase is done, we launch the VND
algorithm to look for a better solution in the neighbourhood structures. The principle of our algorithm is
summarized in Algorithm 3. Parameters of the algorithm are: S, an initial solution; tmax that corresponds
to the maximum running time of the algorithm and kmax that is the maximum consecutive number of
applications for a given neighbourhood. Notation r[1, 3] denotes the generation of a random integer
number in [1, 3].

Algorithm 3: GVNS(S, kmax, tmax)
Set Nset1 = {N1,1, N1,2, N1,3};
Set Nset2 = {N2,1, N2,2, N2,3};
repeat

k← 1;
while k � kmax do

i← r [1, 3];
S1← (N1,i)

[k](S);
S2←VND(S1,Nset1,Nset2) ;
k← k + 1;
if f (S2) < f (S) then

S← S2;
k← 1;

end
end

until t < tmax

return S;

5. Computational results

The proposed GVNS-based heuristic was implemented in C++ language. Tests were performed on a
Pentium IV processor with 3.4 GHz of frequency and 4 GB RAM. The computational analysis is based
on a set of 14 instances provided in Moin et al. (2010) and available in the Center for Logistics and
Heuristic Optimisation (CLHO) website.1 They are characterized by the number of suppliers n and
the number of periods τ . For the proposed GVNS algorithm, we set the time limit tmax = 1, 000 s as a
stopping criterion. We performed 10 runs for each instance.

We report in Table 1 the best objective value (denoted by f ∗) and the number of vehicles (#v)
obtained by the GA proposed in Moin et al. (2010), the 2p-VND and the 2p-VNS presented in Mjirda
et al. (2013) and the proposed GVNS. Bold values in Table 1 refer to the best known solution values
for the considered instance. Then, the CPU times actually used to get the best reported solutions (within
1,000 s) are presented in columns ‘Time’. We denote that GA were run on 2.8 GHZ processor with 4 GB
RAM whether 2p-VND and 2p-VNS were run on a Pentium IV processor with 3.4 GHz of frequency
and 4 GB RAM.

From Table 1, we outline the following conclusions:

• The new proposed GVNS provides better results for 12, 13 and 14 instances (out of 14) when
compared with the 2p-VNS, the 2p-VND and the GA, respectively.

1 http://www.kent.ac.uk/kbs/research/research-centres/clho.
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Table 1 Comparison between the GA in Moin et al. (2010), the two phase methods in Mjirda et al. (2013) and the proposed GVNS
approach

GA 2p-VND 2p-VNS GVNS

Inst (n, τ ) f ∗ #v Time f ∗ #v Time f ∗ #v Time f ∗ #v Time

S12T5 (12, 5) 2,096.75 14 58.48 1,961.71 14 0.08 1,961.71 14 0.10 1,961.71 14 0.10
S12T10 (12, 10) 4,333.27 29 111.23 4,002.85 29 0.21 4,002.85 29 0.20 4,002.85 29 0.20
S12T14 (12, 14) 6,115.19 41 120.31 5,635.77 41 0.34 5,635.77 41 0.30 5,635.77 41 0.30
S20T5 (20, 5) 3,143.39 21 31.81 3,045.08 23 0.34 2,861.26 21 25.30 2,880.65 21 11.33
S20T10 (20, 10) 6,499.40 43 126.03 6,098.15 46 3.12 5,944.72 43 102.30 5,919.38 46 81.54
S20T14 (20, 14) 9,208.43 61 360.33 8,589.36 65 9.63 8,422.02 63 89.50 8,349.86 61 75.92
S20T21 (20, 21) 13,948.41 92 255.83 12,944.08 98 20.85 12,700.27 94 222.70 12,627.87 95 197.28
S50T5 (50, 5) 5,618.09 45 133.40 5,144.23 46 4.97 5,084.00 45 112.40 5,026.55 45 48.49
S50T10 (50, 10) 11,642.00 95 226.01 10,787.88 99 34.38 10,694.60 96 75.30 10,544.43 97 97.11
S50T14 (50, 14) 16,987.00 135 328.07 15,399.82 139 64.90 15,384.96 137 289.92 15,116.20 136 249.06
S50T21 (50, 21) 26,448.77 209 496.72 23,500.94 214 196.31 23,497.40 211 373.20 23,331.83 210 347.13
S98T5 (98, 5) 561,168.21 57 476.77 575,790.06 59 100.14 557,287.97 57 1768.30 557,901.25 57 998.20
S98T10 (98, 10) 1,124,797.57 113 1,307.26 1,160,921.87 119 467.61 1,119,767.72 114 1263.80 1,114,725.28 114 985.67
S98T14 (98, 14) 1,571,652.32 159 1,589.71 1,567,904.75 160 5793.01 1,577,951.04 161 1210.30 1,562,861.43 158 986.83

Average — 240,261.34 79.57 401.57 242,980.47 82.29 478.28 239,371.16 80.43 395.26 237,920.36 80.29 291.37
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Table 2 Standard deviation

Δ2p−VNS (%) ΔGVNS (%)

Inst min avg max min avg max

S12T5 0 0 0 0 0 0
S12T10 0 0 0 0 0 0
S12T14 0 0 0 0 0 0
S20T5 0 1.45 3.28 0.67 0.92 1.18
S12T10 0.43 0.87 1.29 0 0.29 0.61
S20T14 0.86 1.28 1.77 0 0.29 0.74
S20T21 0.57 1.28 1.75 0 0.24 0.66
S50T5 1.14 1.90 2.63 0 0.35 1.03
S50T10 1.42 2.26 2.82 0 0.69 1.22
S50T14 1.78 2.25 2.78 0 0.57 1.29
S50T21 0.71 1.16 1.66 0 0.61 1.49
S98T5 0 1.09 1.83 0.11 0.31 0.60
S98T10 0.45 1.71 4.09 0 0.27 0.51
S98T14 0.97 2.46 4.24 0.00 0.33 0.69

Average 0.60 1.26 2.01 0.06 0.35 0.72

• When considering the minimum number of vehicles used we can observe that the GA provides the
minimum average value. However, the averages differences with the three VNS-based heuristics are
not significant. Even if the use of more vehicles in the solutions leading to the minimum objective
value may surprise, this situation can be explained by the fact that in all three VNS-based methods,
we do not minimize only the number of vehicles.

• The average computational time required for GVNS is less than the average times required for 2p-
VNS, 2p-VND and GA (see, in last row of Table 1 the values 291.37, 395.26, 478.28 and 401.57
for GVNS, 2p-VNS, 2p-VND and GA, respectively).

To complete the analysis of the results, we provide in Table 2 information about the deviation
between the solution found by an algorithm and the best-known solution. We report the minimum devia-
tion corresponding to the deviation with the best solution found over the 10 runs in column (min). Then,
we put in column (avg) the average deviation observed and in column (max) the maximum deviation.
The standard deviation is calculated as

Δ(%)= ((f − fbest)/fbest)× 100,

where f (respectively, fbest) denotes the value (respectively, the best-known value) for the considered
instance. The results in Table 2 concern the 2p-VNS (column Δ2p−VNS (%)) and the GVNS proposed in
this paper (column ΔGVNS (%)).

From Table 2, it appears that the average deviation of GVNS is within the interval [0.06%, 0.72%]
which is less than the average deviation of 2p-VNS. Thus, the new GVNS-based method may be consid-
ered as a new state-of-the-art for this problem, since it outperforms 2p-VNS, the previous best heuristic,
in all three relevant criteria: the precision, the speed and the average deviation from the best-known
objective value.
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6. Conclusions

In this paper, we suggest a new GVNS-based heuristic for solving an IRP. In particular, we propose a
new solution representation allowing the definition of movements between different time periods. The
corresponding neighbourhood structures are used within a VND. Computational results on standard test
instances indicate that our new GVNS-based heuristic may be seen as a new state-of-the-art heuristic for
the IRP variant considered in this work. Future work may include the implementation of our heuristic
to similar variants of IRP.
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