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tience and understanding. My tutor Éric Debreuve for taking the time to help

with writing this paper.

I wish to thank my friends and colleagues for being supportive, and inspiring

me to work, especially Brahim Belaoucha and Christos Papageorgakis. The

whole Athena team, in INRIA made this internship a warm and memorable

experience.

A special gratitude I wish to dedicate to my parents for their support, specially

my mother for not letting me give up in the hardest moments of my life.



Contents

Acknowledgments

Preface 2

Chapter 1 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Internship Overview . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 12

3.1 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Jitter Adaptive Dictionary Learning . . . . . . . . . . . . . . . . 19

3.4 Dictionary learning from multi-dimensional data . . . . . . . . . 22

3.5 Source Localization and Leadfield . . . . . . . . . . . . . . . . . . 25

Chapter 3 30

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Correlation coefficient. . . . . . . . . . . . . . . . . . . 30

4.1.2 Singular value decomposition. . . . . . . . . . . . . . 32

4.2 Dictionary learning and source localization . . . . . . . . . . . . 33

4.3 Correlation among trials . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 37

5.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5 46

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



Preface

Signals acquired by electroencephalography (EEG) and magnetoencephalogra-

phy (MEG) have high dimensionality and low SNR, thus are hard to inter-

pret. Sophisticated mathematical calculations and machine learning methods

are constantly being developed for reducing the dimensionality and finding right

representations for such complex signals.

First issue, denoising a signal by simply averaging it through multiple trials

showed to have a considerable drawback in cancelling some important variability

of the signal. This problem is approached in various ways, e.g., Consensus

Matching Pursuit [2] that matches some predefined waveforms with the acquired

signal to ensure keeping the signal variability of those specific waveforms.

Second issue, finding a correct representation of the signal while trying to re-

duce its dimensionality showed that it needed sophisticated mathematical calcu-

lations. In other words, for many signal classes, designing a good representation

must be met, such as wavelets [21], curvelets [3] and many more. Unfortunately,

finding the mentioned representations can be difficult and time consuming. Af-

ter realizing the sparse nature of signals, the above problem was solved using

sparse coding within a dictionary learning method [19, 21].

Lastly, using the measurements from one single electrode, means neglecting

the spatial distribution of the electrical activity. Naturally, this deficit inspired

the creation of methods such as differentially Variable Component Analysis [16]

and Jitter Adaptive Dictionary Learning (JADL) for multidimensional data

[22]. Introducing spatial distribution has enabled us to relate this problem to

source localization ones. This brings us to our topic, inspired by the JADL for

multidimensional data (mJADL). We will inspect whether by introducing the

leadfield as a constraint, i.e. by using the information from the source space we

could get a more robust approach. We will do so by showing the correlation

between the leadfield columns and the learned coefficients in mJADL, as they

have analogous roles. Both the leadfield and the coefficient matrix are linear

operators, only mapping different sources or atoms to the EEG measurement.
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Chapter 1

2.1 Introduction

The most popular methods for measuring brain activity are electroencephalog-

raphy (EEG) and magnetoencephalography (MEG). Synchronous activity of

millions of neurons create constructive interference that enable the appearance

of different potentials that are strong enough to be measured noninvasively on

the skull with a number of electrodes. In other words, constructive interference

is a result of the linear superposition of well aligned features of individual neu-

ronal activity. EEG measures this electrical property of neurons, whereas MEG

uses very sensitive magnetometers to measure the magnetic field arising from

the electrical currents. Thus, the sensors record the linear mixture of the source

activity which is spread spontaneously within the head (volume conductor).

Volume conduction can be defined as the transmission of electric or magnetic

fields from an electric current source through biological tissue towards the sen-

sors. When the electric or magnetic activity reaches the sensors, it is drastically

attenuated because it is being severely space averaged within the distance from

the source to the skull.

Reconstruction of the source current distribution from the measured surface

fields is called the inverse problem. Its solution requires simulation of the field

distribution for a current dipole in the corresponding volume conductor using

the quasi-static Maxwell equations, the so-called forward problem. We will

discuss these problems in more detail in chapter 2.

Both EEG and MEG (M/EEG) are noninvasive, but the EEG is preferred

as it is portable and less expensive. Throughout this work we will be dealing

with EEG signals although the same conclusions can be applied to MEG.

We can also mention that the signals can be evoked, in that case they are

called event-related potentials (ERPs), or they can be created spontaneously.

The event-related potentials are associated with the occurrence of a specific and

observable event, such as muscle movements or the processing of a stimulus.

The non evoked activity generated by neurons can be divided in different brain

rhythms, such as: Delta (0.1-3.5 Hz, produced during deep sleep), Alpha (8-13

Hz, state of physical relaxation, but awake), Beta (14-30Hz, full wakefulness and
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alert state) and others, see [24]. This division is important as different brain

states or body functions can be associated to these rhythms, allowing to isolate

them for further analysis. So, EEG is used for medical purposes, for discovering

symptoms from insomnia to epilepsy, and many more.

EEG is also used for Brain- Computer interfaces (BCI), in which the brain

activity is interpreted in order to give commands to various devices. Technolog-

ical advances have enabled scientists to use BCI in Bionics, i.e. a research field

which aims in providing people with high mobility disorder the opportunity to

interact with their environment by manipulating artificial limbs or other devices

with only their brain activity. BCI is also used in entertainment, such as video

gaming and various applications sensitive to neural commands. Even though it

has advanced a lot since the first BCI project [28], on account of the noisy and

highly irregular nature of the signals, it is still not reliable enough to be used out

of the laboratories. For that reason signal acquisition (EEG or MEG) and signal

processing techniques have been improved to avoid errors, allowing the devel-

opment of more robust systems and less tiring tasks for the users. There are

three main steps in any BCI design [29, 18] corresponding to signal acquisition,

signal processing and application interface, as shown in Figure 1.

Figure 1: This figure shows the three main steps in Brain Computer Interface,
signal acquisition, signal processing and device output or application interface
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We are dealing with the second step, signal processing, which is analyzing

complex signals to extract and interpret the useful information hidden in this

very noisy data. More precisely, signal processing is composed of (i) feature

extraction, i.e. finding reduced representation of the input signal, and (ii) feature

translation which uses the extracted feature vector and classifies/translates it

into commands to control a device. Our work is based on enhancing the (i) step,

that is, representing complex data as linear combinations of a few components.

In the image bellow we have an example of a BCI spelling device (using

specific ERP’s called P300) used in INRIA, team Athena. We can have a better

view on the signal acquisition technique that is used, i.e. a cap with electrodes

and we can see the device output (the 3rd step) along with the feedback the user

responds to.

Figure 2: This image shows an example of a BCI system, called speller checker,
used by an Athena team member, in INRIA.

On the other hand, our work will be to introduce the notion of the source

space and leadfield, which brings us to another application of the EEG signal,

the source localization. Therefore, by advancing the method mentioned earlier,

we will later introduce a possibility of tracking the sources of the electrical

activity, as well.
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To portray different approaches for the process of feature extraction, in the

next section we will present the literature overview.

2.2 Literature overview

The obtained M/EEG measurements are very noisy and multi-dimensional, i.e.

provide a vector of measurements at each time instant. The intuitive method for

extracting waveforms (in this case one deterministic waveform d) and denoising

the signal was by averaging it through multiple repetitions (trials), using the

basic signal plus noise model (SPN) [6]:

xm = d+ εm, m = 1 . . .M,

where xm are the signals in M number of trials. The random variable εm

represents noise. It is usually assumed that it has a Gauss distribution. Let’s

say we are measuring the brain activity of one test-subject and taking into

account the signal from only one electrode. Naturally, the signal we acquired

is very noisy. The trivial way to induce the seemingly relevant waveform is to

repeat the same test and average the signals. So averaging over m will look like:

d̂ =
1

M

M∑
m=1

xm = d+
1

M

M∑
m=1

xm.

In this case, we assume that the expected value of noise is zero. Being in-

dependent across trials, it will cancel out, whereas the important information

will stand out and be easy to extract. We are also assuming that the relevant

waveform has same phases and appears at approximately the same time within

trials. Unfortunately, this is rarely the case. Because no matter if the test is

done on the same subject, through multiple repetitions, we might encounter dif-

ferent reactions from test-subjects, such as fatigue for example. These reactions

directly influence the output signal, in this example, in the amplitude change,

but one might encounter phase variability and time delays (jitter) which are a

lot worse cases.

It is easy to see that by simply superimposing these signals we might lose

some important information.

The extension of the SPN model would contain trial-dependent latencies,

and would estimate them in an iterative process [30]. Another improvement is
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to use different representation for the signals (wavelets, curvelets) for a better

conservation of phase and time variabilities. For the time being, we will not go

into detail about methods of conserving signal variabilities, but we will remark

that in this example, we have taken into account one single electrode. It has

been shown that it is important to have a spatial information about the electrical

activity spread out within the volume conductor. In other words, it is important

to know the weight, influence of an electrode to the entire signal. An explanation

is provided, in the subsection 2.5. Source Localization. Before taking into

account time variability and multi-channel signal distribution, we will present

the simplest approach to model the measured signals as linear combinations of

different components.

Given a number of experimental trials {xm}, m = 1, ...M , it is of interest

to extract different components or waveforms {dk}, k = 1, ...K. The measured

signals are linear combinations of these components, which reads:

xm =

K∑
k=1

akmdk + εm, m = 1 . . .M, (1)

with akm ∈ R being the coefficients or amplitudes of components dk and εm

again presenting the background noise.

If xm and dk are discrete signals with N ∈ N sampling points, (1) can be

formulated as a matrix factorization problem:

X = DA+ E (2)

where the columns of X,E ∈ RN×M and D ∈ RN×K contain the vectors xm, εm,

and dk, respectively, and A = akm ∈ RK×M is the coefficient matrix.

An obvious drawback in the model lies in the fact that the amplitudes may

be present both in D and in A. Therefore, all components dk are normalized

in the `2 -sense, such that their amplitudes (or more precisely `2 -norms) will

be captured exclusively in A. Various methods have been used for reducing

the dimensionality of the acquired signal such as Principal Component Analysis

(PCA), which projects the input data into a lower dimensional space and Inde-

pendent Component Analysis (ICA) that separates linearly independent sources.

Sparse coding techniques and dictionary learning (DL) will be explained later.
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Principal Component Analysis If the number of components {dk} we wish

to extract is in a lower dimension than the signal {xm}, i.e. K ≤ M we could

reduce or decompose it with PCA and stay in the lower K-dimensional space.

PCA uses the co-variance matrix and the goal is to (i) minimize redundancy,

measured by the magnitude of the co-variance (off-diagonal elements), and (ii)

maximize the signal, measured by the variance (diagonal elements) in the com-

ponents {dk}. When performing a full PCA, any number K of the first principal

components gives a set of normalized, orthogonal vectors. This allows to choose

the number K a posteriori without the need to recalculate the principal compo-

nents. The hierarchical ordering of principal components can be very useful for

data compression and dimensionality reduction, as well as for separating sig-

nal (first components) from noise (last components). However, this separation

of components, variance maximization and orthogonality encourage mixing of

signal components and noise. If these are of similar amplitudes and linearly

correlated, PCA risks at discarding these high-correlated components and thus,

we might again lose relevant variability of the signal.

Independent Component Analysis Another way to approach the decom-

position (2) is to assume higher order statistical independence between the com-

ponents {dk}. This problem belongs to the class of blind source separation (BSS)

methods. A prominent representative of BSS methods is the so called cocktail

party problem [14]. ICA algorithms generally rely on the assumption that the

components have non-Gaussian distributions, which presents one of the limita-

tions in neuro electrical signal processing. The fact that the distributions of

neural sources are often not far from being Gaussian, showed reduced use of

ICA in this field of research.

These linear decompositions often discard high-correlated components with

the task and impose orthogonality onto the basis vectors. Dictionary Learning

method and its variants [8, 19], eliminate these risks and requirements, allowing

more flexibility to adapt the representation of the data. However, they do not

take into account small time variabilities of the signal, called jitters.
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Methods that conserve variabilities We focus on a Dictionary Learning

variant, a method called Jitter Adaptive Dictionary Learning (JADL) [13]. Pre-

decessors of JADL such as Consensus Matching Pursuit (CMP) in [2] and dif-

ferentially Variable Component Analysis (dVCA) proposed in [27] enhanced the

approach in conserving different signal variability. For example, CMP uses pre-

defined components, Gabor wavelets, but it limits the data representation, i.e.,

it can only extract these predefined waveforms from the signal. The dVCA

model is based on the Bayes’ theorem for finding the maximum probability es-

timates of the components within the signal. It is an alternate minimization

method which starts with learning one signal component with it’s estimated

latency, waveform and amplitude. In each iteration a new component, along

with its parameters is learned, i.e., each mentioned attribute of the component

is learned separately in each iteration (alternate heuristic). As long as the resid-

ual signal still contains relevant structures, new components are added to the

learning procedure. The same authors extended the dVCA model in [16] to

include multi-channel recordings.

2.3 Internship Overview

This work is a continuation of a method developed on Dictionary learning,

performed at Inria with the leadership of professor Théodore Papadpoulo. A

method called Jitter Adaptive Dictionary Learning (JADL) [13], is based on

the Alternate heuristic (or approximate solution method), since the nonlinear

continuous optimization model considered is not convex and therefore has many

local minima. Dictionary learning model has two types of variables: coefficients

and a dictionary, which will be described in detail throughout this paper. By

applying classical Alternate heuristic, nonlinear problem is decomposed into two

convex and easy to solve subproblems: (i) by fixing the value of the dictionary,

the coefficients are found; (ii) by fixing the coefficients such obtained, a new

dictionary is being found, or simply improved. The procedure of fixing the two

sets of variables is repeated until stability or convergence, i.e., until there is no

further reduction in error (objective function). In other words, the procedure

alternates between solving two subproblems until stability. Unfortunately, such
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technique, even being easy to create, sometimes provides a solution very far

from the global minimum.

JADL from [13]. JADL method also uses the Alternate idea. However, both

models of the two convex subproblems are extended and made more complex to

solve. The extension includes problem specific characteristics and knowledge,

such as delay in which some waveforms appeared. For those delays, values of

a given number of time shifts (called jitters) are added to the model. In that

way the size of both the dictionary and the coefficient sets are enlarged and one

needs to chose the shift that is the best, with respect to the current solution.

Thus, one subproblem becomes combinatorial and hard to solve. However, it

appeared to be better to solve such more realistic complex model with approx-

imate solution method, than solving exactly the convex subproblem that does

not include problem specifics (in this case jitters). Advantages of JADL over

other methods are demonstrated in [13] on synthetic data and on the real data.

The drawback is that it is using a single channel. Model considered also includes

a repetition of the same experiment on that channel in different time slots. It

is called multi-trial model.

JADL from [22]. Continuation of the work is done in [22]. Firstly, the model

is extended to the case where there are several electrodes/channels taken into

account, not just one. In that way three-dimensional input data (3-D matrices)

are obtained: time slots × trials × channels. It is called multidimensional data

(m-JADL). For such a case, three different adaptations to the original two-

dimensional JADL are designed in [22]: simple method, multiplexing method

and complete method. Moreover, due to the nice plotting properties of Python

programming language, the whole C++ with Matlab JADL code is transferred

to Python. Again, promising results are obtained on both, synthetic and real

data sets.

Main purpose of this Internship. The main research is again, done on the

continuation of the previous work in [13, 22]. One parallel to Dictionary learn-

ing problem is the localization of sources of signals (waves) within the human

head. The goal of this internship was to understand the relation between the

Dictionary Learning method and the source localization one. By presenting

the measurements, or the EEG signals as a linear model, we are able to create
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that relation. In the linear model, a source matrix S is mapped by a linear

operator, called lead field or gain matrix G. In other words, the gain matrix G

maps the active sources (signals in time) onto the electrodes/channels, obtain-

ing the EEG measurements; in the same way the coefficient matrix maps the

atoms from the Dictionary to the EEG measurements. An interesting question

that was not fully addressed in [22], but mentioned in Conclusion section, is

the correlation between these two approaches: Dictionary learning and Source

localization. More precisely, the question is -could the number of sources in

Source localization be equal to the number of atoms in Dictionary learning? If

we assume so, then the positive answer to this question will follow if there ex-

ists a correlation between G and the coefficient matrix. In this internship we

addressed the question whether the coefficient matrix can be correlated with

the lead field and then performed a series of experiments on the same data sets

as used in [22]. We also showed that with such correlation, we might use that

information for the inverse problem of the source localization.

Outline. In the next Chapter we first explain how data are collected and rep-

resented. Then, in Section 2.2, we give a detailed view of Dictionary learning

problem and its connections with some known optimization techniques from

Numerical analysis and Operations research. Jitter adaptive dictionary learn-

ing method is then explained, together with some possible improvements. This

chapter is concluded with the basic facts regarding Source localization prob-

lem. In Chapter 3, rules of the new algorithm which connects two approaches:

dictionary learning and source localization, are explained. Chapter 4 contains

computational results with method described in Chapter 3. It also includes brief

description of generating data sets. At the end, in Chapter 4, the conclusions

and suggestions for the possible future work are drawn.
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Chapter 2

In this chapter, in order to provide a full understanding of the signal processing

methods and feature extraction, in section 2.1 we discuss some popular data

representations and explain the meaning of sparseness, which became an im-

portant concept in neural signal processing. Dictionary Learning with its novel

variant, Jitter Adaptive Dictionary Learning, is described in 2.2 and 2.3, respec-

tively. In section 2.4 the multi-electrode or multi-channel dictionary learning

algorithm will be explained. The introduction of source localization problems,

the Forward and Inverse problems are given in section 2.5.

3.1 Data representation

Fourier Transform. Signal processing techniques are selected according to cer-

tain signal characteristics. For example, the time domain representation gives

information about the maximal time resolution, i.e, the intensity of the sig-

nal at time t, but no frequency information. Same implies to the frequency

representation, where we can notice the mutual exclusion of each representa-

tions. However, a signal can be represented as a linear superposition of sines

and cosines, characterized by their frequency f (or period T = 1
f ). The Fourier

Transform (FT) allows a stationary signal x(t) to be defined as the inner product

of x(t) and the complex sinusoidal function e−iwt

∑
t

x(t)e−iwt =
∑
t

x(t)(cos(wt) + i sin(wt)),

where w = 2πf . FT has two disadvantages, (i) the signal is often not stationary,

(ii) the lack of time information about the evolution of frequencies.

Short Time Fourier Transform. A new method was developed to overcome

these issues, called Short Time Fourier Transform (STFT) or Gabor Transform.

It allows to analyze a small signal section multiplying the signal x(t) by a window

function g(t) that slides along the time axis before determining the frequency

spectrum. The STFT results in describing the signal in time and frequency,

giving a two-dimensional representation. The assumption of this method is that

the signal viewed within a window is stationary, and sometimes it is difficult to
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find appropriate window size where the signal has that property. The famous

uncertainty problem states that it is impossible to know at the same time two

physical magnitudes such as the position and the velocity of a particle, meaning

that in our case, by reducing the time window one will increase the temporal

resolution but also decrease the frequency resolution. The main disadvantages

of STFT is that the width of the window is fixed for the entire signal analysis,

implying a strict frequency and time resolution. In addition, the STFT is not

able to give information if the windowed signal is not stationary. This leads to

the development of the Wavelet theory to be able to represent non stationary

signals in the time-frequency domain.

Wavelet theory. As EEG signals are not stationary, i.e., several rhythms vary

at the same time, the Wavelet theory seems fit for data representation. As

STFT, wavelets convolve the signal to be analyzed with the window function,

but it differs in the sense that the window size is not fixed. The window size

adapts to different frequencies, such as higher frequencies are analyzed using

narrow windows to obtain good time resolution, and lower frequencies are ana-

lyzed with wide windows to obtain good frequency resolution.

Wavelets have been popular choices not only because of their good mathe-

matical properties such as orthogonality, shift and scaling invariance, but they

have shown to be suited for sparsely representing natural signals and images

[21]. In addition, they facilitate the interpretation of signals by representing

them in the time-frequency domain. An advantage of using complex-valued

time-frequency representation is the possibility to treat magnitude and phase of

each frequency component separately.

Sparsity. Since natural images and signals contain information from limited

frequency spectra, sparsity has shown to be a very useful property, especially in

the case of time-frequency representations. The current amplitudes generated by

a neural source, for example, have a sparse distribution over recording channels

as they are only measurable in sensors nearby. Sparsity may not only occur

across channels, but it has been observed that certain waveforms are present

only in a subset of trials.

Something being sparse means that a given data can be described in a small

number of basis functions chosen out of a larger set. Given a basis of a vector
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space V , every element of V can be expressed uniquely as a linear combination

of basis vectors. The simplest description would be to consider a linear system

of equations x = Dα, where D is an underdetermined m × p matrix (m �
p) and x ∈ Rm, α ∈ Rp. D is given and called the dictionary or the design

matrix. The goal is to estimate the signal α, subject to the constraint that is

sparse. The underlying motivation for sparse decomposition problems is that

even though the observed values are in high-dimensional (m) space, the actual

signal is organized in some lower-dimensional subspace (k � m). Sparsity

implies that only a few components of α are non-zero. This further implies that

x can be decomposed as a linear combination of only a few column vectors in

D, called atoms. The sparse decomposition problem is represented as,

min
α∈Rp

‖α‖0 s.t. x = Dα

where ‖α‖0 is a pseudo-norm, l0, which counts the number of non-zero compo-

nents of α. This problem is NP-Hard, being a subset of selection problems in

combinatorial optimization. A convex relaxation of the problem can instead be

obtained by taking the l1 norm instead of the l0 norm, where ‖α‖1 =
∑p
i=1 |αi|.

The l1 norm induces sparsity under certain conditions which we will explain in

more detail in the next subsection when describing the sparse coding method.

Traditionally, sparse decomposition was performed over predefined dictionar-

ies that were known to yield sparse representations, such as windowed sinusoidal

functions or different types of wavelets, such as Gabor wavelets in Consensus

Matching Pursuit [2]. Finding the optimal design of the dictionary and calculat-

ing the sparse representation in one alternating method, is known as dictionary

learning. Both concepts are presented in the following subsection.

3.2 Dictionary learning

We first explain the simple model that covers the experiment with a single

electrode, without repetition. Then we extend this basic model in two directions:

multi-trial case and multiple electrode case.

Simple model. Data obtained by measuring signals on one electrode in N time

segments are denoted by x` ∈ R, ` = 1, . . . , N . One wants to map them from
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RN to RK , with K number of vectors di and unknown coefficients ai. In other

words, it is necessary to consider the linear transformation D that maps RN to

RK :

Da = x, (3)

where linear operator D is represented by matrix D ∈ RN×K . If D and x are

given, then the problem transforms to solving the system of linear equations

with K unknowns and N equations. Of course, if K = N and det(D) 6= 0, we

have a single solution a∗i that satisfies Da = x. If K < N , which is our case,

then the system is over-determined and has a solution if the over-determination

is due to redundancy. One would like to get a solution whose sum of square

differences of right and left hand sides of (3) is minimum

(min
a

)f =
1

2
‖x−Da‖22. (4)

or, after including the definition od Euclidean norm, we have

(min
a

) f =
1

2

N∑
`=1

(
x` −

K∑
i=1

d`iai

)2
(5)

Note that f is a convex function, since its Hessian is equal to the unit matrix

E and thus is positive definite. Note also that in the case K = N , the solution

of (5) is also the solution of (3), obtained by solving the equivalent system

(DTD)a = DTx. It appears that the solution of (5) is not stable, i.e., a small

change in data, that are also noisy, produce a large change in coefficients ai.

Therefore, some regularization technique is welcome. The usual way to overcome

this difficulty is by adding the so called Lasso part in the minimization of f :

(min
a

)f =
1

2
‖x−Da‖22 + λ‖a‖1, (6)

where λ > 0 is a regularization parameter. By using the definition of the

Euclidean norm, the latest minimization problem may be written as

(min
a

) f =
1

2

N∑
`=1

(
x` −

K∑
i=1

d`iai

)2
+ λ

K∑
i=1

|ai|, (7)

In addition, the large value of λ will force more zero values in the final solution.

λ is a penalty/regularization parameter as it makes the balance between data
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fidelity and constraint enforcement. In other words, λ is controlling the trade-off

between the data fitting and regularization. We have empirically seen that by

changing λ, we control the sparsity, which is an increasing function of λ. When

λ is near zero, there is no sparsity and as λ increases the solution becomes

sparse.

Up to now, we assumed that the matrix D which maps RN to RK is known.

From the problem nature, this is not the case. We would like to minimize

the objective function (3) with respect to a, but for the best possible matrix

D. Therefore, the real model becomes more complex. Nonlinear programming

model obtained contains products of variables ai and d`i.

(min
a,D

) f =
1

2

N∑
`=1

(
x` −

K∑
i=1

d`iai

)2
+ λ

K∑
i=1

|ai|, (8)

This constrained nonlinear problem is no more convex since it contains a product

of variables, and therefore, it can not be easily solved. Exact solution methods

are still not proposed in the literature to solve it. One possible way in that

direction could be to transform the problem into biliner form and then apply

some bilinear exact solution method [1].

Alternate heuristic. On the other hand, one can see that a heuristic that

alternatively solves two convex problems may lead to some feasible solution:

(i) for a given matrix D find vector a that minimizes f ;

(ii) for such obtained coefficients ai, find the matrix D that minimizes f ;

(iii) repeat steps (i) and (ii) until there is no improvement of f when compared

with its value in the previous repetition (iteration).

Note that the idea of solving alternatively two easier problems made from

a complex one, is used in many scientific fields. For example, in solving the

minimum sum of squares clustering problem. The Alternate method is known

as k-means heuristic [17]; in solving the location-allocation problem, it is known

as Cooper’s heuristic; [5]; in solving the pooling problem in the oil industry, it is

known as refirement method [11], etc. Unfortunately, Alternate heuristic meth-

ods sometimes stop in a local minimum with bad quality, i.e., solution whose
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function value f is very different from the global exact minimum. Therefore, a

lot of research efforts in the literature are devoted to improve the quality of a

pure Alternate heuristic.

The further development of this alternate heuristic, in our problem, includes

introducing new terms and notations. As we already know, matrix D is called

dictionary and the process of getting their new values from iteration to iteration

is called dictionary learning. Columns of matrix D are called atoms, thus there

are K atoms. What we haven’t mentioned is that finding coefficients ai in step

(i) of the Alternate heuristic is called sparse coding. Finding matrix D in step

(ii) of the Alternate heuristic is called dictionary update. Thus, the problem

is to construct a dictionary learning procedure that includes solving two more

simple problems alternatively, and whose error f will be as small as possible.

Just to recapitulate, the coefficients are learned using the sparse coding,

which yields to maximize the number of zero elements, reducing the number of

active components within the dictionary. As we mentioned earlier, the l0 norm

is solving this issue, but as it is NP hard we are introducing a relaxation with

l1 norm, which is called the Lasso problem and is solved with the Least Angle

Regression approach (LARS) in [7].

Extended model with more trials. The discussion in the previous subsec-

tion covers the case of getting signals using a single electrode in N time intervals

(seconds). The natural extension is to repeat the same experiment M times.

Repetition of the same experiment, in the different time intervals, increases the

reliability of input data that are influenced by noise. So, input values are x
(j)
`

(j = 1, . . . ,M , ` = 1, . . . , N). Then the extended model with M trials, and a

given matrix D, has a form

( min
aj∈RK

) fj =
1

2
‖xj −Daj‖22 + λ‖aj‖1, ∀j = 1, . . . ,M, (9)

or

(min
aj

) fj =
1

2

N∑
`=1

(
x
(j)
` −

K∑
i=1

d`ia
(j)
i

)2
+ λ

K∑
i=1

|a(j)i |, ∀j = 1, . . . ,M. (10)
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The natural way to get one common objective function out of M is to sum

them. In addition, a constraint that prevents atoms from growing arbitrarily

large should be taken into account. The resulting constrained nonlinear program

is as follows:

(min
aj ,D

)

M∑
j=1

fj =

M∑
j=1

(
1

2

N∑
`=1

(
x
(j)
` −

K∑
i=1

d`ia
(j)
i

)2
+ λ

K∑
i=1

|a(j)i |

)
, (11)

subject to
N∑
`=1

d2`i = 1, ∀i = 1, . . . ,K. (12)

Note that in problem (11) - (12) unknown variables are atoms of the dictio-

nary as well as vector a. Therefore, Alternate algorithm from above, as well as

its variants can be applied as a mean to solve this problem.

Dictionary Learning in literature. In dictionary-based approaches, an ex-

pert selects a specific family of basis functions (atoms), known to capture im-

portant features of the input data, for example wavelets [21] or curvelets [3].

When no specific expert knowledge is available, dictionary learning algorithms

could learn those atoms from a given dataset. The problem is then stated as

an optimization procedure (as defined in (8) or (11)-(12)) usually under some

sparsity constraints. Thanks to the pioneering works on sparsity constraint de-

composition of Mallat and Zhang, see in [20], on the Lasso problem [26] and on

sparse signal recovery [4], efficient algorithms are available both for projection

on overcomplete representations [7] and dictionary learning [8, 19].

Learning a dictionary instead of using predefined basis, has shown to improve

dramatically the signal reconstruction [8]. A sparse approximation of a signal

x ∈ RM over a dictionary D ∈ RM×K with K columns or atoms is when we

can find a linear combination of a few atoms that is “close” to the signal x.

While sparse coding uses a model of linear combinations of signal compo-

nents (like PCA and ICA), it strongly differs from these techniques qualitatively.

This is due to the fact that a dictionary typically contains a large number of

atoms and is often shift- and scale-invariant. In this sense, these dictionaries

are well suited to capture temporal variability such as latency jitter, change
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of duration, frequency or phase. However, in many cases the shapes of the

atoms do not well represent the characteristic ERPs. These potentials are often

asymmetric and not well-localized in time-frequency domain. Hence, in the case

of a Gabor dictionary, for instance, a large number of these symmetric, time-

frequency localized atoms is needed to encode the ERP shape. As the shapes of

the ERPs are usually not exactly known a priori, it is not clear how to design

the optimal dictionary. Instead of defining it beforehand, it may therefore be

beneficial to learn it together with the decomposition.

We have presented the main concepts of Dictionary Learning (DL), taking

first into account the single electrode/single trial case. After expanding the

model to the single electrode/multi-trial case, we are ready to show the multi-

electrode/multi-trial one. However, this model was used onto a variant of DL

which takes into account time variabilities. Therefore, we will primarily provide

the description of this DL variant, called Jitter Adaptive Dictionary Learning

(JADL) [13] and then introduce the multi-electrode JADL model [22].

3.3 Jitter Adaptive Dictionary Learning

Description. One possible way to reduce the error of original Alternate pro-

cedure, proposed in [13] is called Jitter Adaptive Dictionary Learning (JADL).

It represents a brilliant way of taking into account the time variabilities of the

signal without inducing much the computational complexity of the Dictionary

Learning Algorithm. The D matrix is being enlarged by S possible different

time occurrences of a waveform, and then reduced back to its initial dimension

once the new time occurrence (delay) has been chosen. In other words, the

dictionary is being expanded with the shifted versions of each atom; then, with

sparse coding, we are choosing the best shift operation and cancelling other

unnecessary shifts that were added, thus reducing the dictionary to it’s initial

dimension.

The shift operation δ is a function δ ∈ ∆, where ∆ is a set of small shifts

(called jitters) relative to the size of time window. Let us denote its cardinality

with S = |∆|. Formally speaking, each element of the matrix D may be chosen
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among S possible proposed values (shifts). In that way, the continuous problem

of finding new atoms in the next iteration of Alternate heuristic (i.e., within

dictionary learning step of the algorithm), is transferred to discrete one; we

need to find one, out of S possible values around the current value of d`i.

DS =


d111 d112 . . . d11S d121 . . . d12S . . . d1K1 . . . d1KS

d211 d212 . . . d21S d221 . . . d22S . . . d2K1 . . . d2KS
...

...
...

. . .
...

dN11 dN12 . . . dN1S dN21 . . . dN2S . . . dNK1 . . . dNKS


In other words

d`is = d`i + δis, δis ∈ ∆, ` = 1, . . . , N, i = 1, . . . ,K, s = 1, . . . , S.

Thus, the matrix DS has dimension N ×K · S. The implementation of dictio-

nary learning JADL method consists of two basic steps: (i) sparse coding; (ii)

dictionary update.

Sparse coding step. By introducing set ∆ and jitters, the LARS method that

was used to solve step (i) in Alternate heuristic should be modified. Since the

number of columns of matrix D increases S times, the size of the unknown

vector a should increases to K · S as well to allow multiplication DSaSj :

aSj = (a
(j)
11 , . . . , a

(j)
1S , | a

(j)
21 , . . . , a

(j)
2S , | . . . , |a

(j)
K1, . . . , a

(j)
KS)T

The problem is as follows:

(min
aSj

)fj =
1

2
‖xj −DSaSj ‖22 + λ‖aSj ‖1, (13)

subject to

‖aSij‖0 ≤ 1, i = 1, . . . ,K. (14)

The constraints (14) present that the number of non-zero elements in each

segment of vector aSj (out of K of them) can be at most one. In [19] is used an

additional constraint in which these elements can be only 1 or 0. This condition

in fact makes problem (13)-(14) non convex. In other words, this problem

belongs to combinatorial optimization, since unknown values a
(j)
is belongs to the

set {0,1}. It can be reformulated as follows:
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(min
aSj

)

M∑
j=1

fj =

M∑
j=1

(
1

2

N∑
`=1

(
x
(j)
` −

K∑
i=1

S∑
s=1

d`isa
(j)
is

)2
+ λ

K∑
i=1

S∑
s=1

|a(j)is |

)
, (15)

subject to

S∑
s=1

a
(j)
is ≤ 1, ∀i, j (16)

a
(j)
is ∈ {0, 1}, ∀i, j, s. (17)

Constraint set (16) indicates that in each part of vector aji with S elements, at

most one should be equal to 1. Constraint set (17) indicates that all variables

are Boolean.

Sparse coding problem (15) - (17) is defined as nonlinear 0-1 program, which

is clearly not easy to solve exactly. In [13], a local search (LS) heuristic is

used to get a local minimum. The solution is represented by vector which

has K arrays with length S. The neighborhood is defined by swapping each

variable whose current value is 1 with another variable with zero value, within

the corresponding array with S elements. The cardinality of such neighborhood

is obviously K ·S. This number is much smaller than SK , being the cardinality

of the whole solution space of this sub-problem. The step of finding the best

swap is repeated until there is no improvement in the error f .

LS example. To explain better the idea of solving hard sparse coding step by

local search heuristic, we will use an example. Assume that S = 4 and K = 2.

Assume further that the current value of vector a of size 8 is: a = (0100|0010).

We want to check if change of some element of a from 0 to 1 will improve the

objective function f . Since constraint (16) should be satisfied, change of any

zero to one means that one, in each of the two parts of the solution a should

become zero. The complete neighborhood N of solution a is then defined as

N (0100|0010) = {(1000|0010), (0010|0010), (0001|0010), (0000|0010)

(0100|1000), (0100|0100), (0100|0001), (0100|0000)}.

The cardinality of N (a) is obviously equal to 8 (|N (a)| = K · S = 2 · 4 = 8).

Within LS, we check the value of function f in each shifted value from N (a).
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If there is an improvement, we move to that solution and repeat the same step

(define its neighborhood, etc). In case that the current solution is the best

among their 8 neighboring solutions, we get local minimum of the problem and

proceed to the dictionary update step.

Dictionary update. When the sparse coding step is executed, the dictionary

learning step is transformed into the following combinatorial optimization prob-

lem:

(min
DS

)

M∑
j=1

fj =

M∑
j=1

(
1

2

N∑
`=1

(
x
(j)
` −

K∑
i=1

S∑
s=1

d`isa
(j)
is

)2)
(18)

subject to
N∑
`=1

S∑
s=1

d2`is = 1, ∀i = 1, . . . ,K. (19)

It should be noted that the mixed integer nonlinear problem (18)-(19) is now

NP-hard, since there are exponential number (SK) of possible values of D after

choosing δis values, for each d`i. Therefore, the subproblem (ii) from dictionary

learning algorithm becomes hard to solve as well. However, it could be solved

approximately, if S and K are not so large.

In [13] a local search approach of this problem is also implemented. Based

on the first order conditions, the updating formula for the new set of atoms is

derived. Jitter values δ are also chosen in the vicinity (neighborhood) of the

current value of dijs.

Computational results in [13] show how results gained by JADL method are

better than with the original alternate algorithm.

In the next subsection we present the multi-dimensional JADL (mJADL)[22],

the multi-electrode/multi-trial case, we mentioned earlier. Three models were

proposed presenting the signals in three dimensions, that follows: different chan-

nels, trials and time instances. We will discuss these models in detail in the next

section.

3.4 Dictionary learning from multi-dimensional data

During the EEG recording, different parts of the brain are active at each time

instant but do not produce the same pattern of activity. By using a single
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electrode, only a subset of the brain activities was considered and modelled at a

time instant. Multiple repetition approach degrades the shapes and timings of

the activities and hides their inherent variability. And EEG are inherently multi-

dimensional, i.e. provide a vector of measurements at each single time instant.

It is obvious that increasing the number of channels (electrodes), much more

signals can be collected. They should give more precise information regarding

brain activities we are trying to model and recognize. We talk about multi-

dimensional EEG data measurements, as presented in Figure 3.

Figure 3: Multi-dimensional data: three dimensions are taken into account:
time segments, trials and channels/electrodes, from [22]

Each point in this 3-D space has coordinates (i,m, c) ∈ R3, (i = 1, ..., N ,

m = 1, ...,M , c = 1, ..., C) representing the time i when a signal is kept, in trial

m and by electrode c, respectively.

In [22] the spatial dimension of the activity (its distribution across electrodes)

is considered. Dictionary learning methods explained earlier are adapted for

solving this multidimensional case. In fact, the jitter adaptive dictionary learn-

ing (JADL) method is modified to handle multidimensional measurements. The

basic question is how to use the additional data set within JADL. In [22], three

different ways are proposed:

Simple model. The simplest one is to consider additional electrodes as increase

of the number of trials. The input data belongs to X ∈ RN×M ·C . Therefore,

the only change is to set new M to be equal to M · C. All other parameters

remain the same, including the K atoms (learned dictionary). A basic drawback
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of this model is the fact that the same set of jitters ∆ is used for all channels.

Multiplexing model. In this model projection to 2-dimensional case is done

in different way. The input matrix X is presented as X ∈ RN ·C×M . This means

that the number of rows is increased C times. In other words, for each time

unit, the values of signals over all C electrodes are averaged. Dictionary also

increased its dimension: D ∈ RN ·C×M . More details could be found in [22].

Complete model. This model learns a single dictionary over multidimensional

recording that have the same waveform and jitter, but different coefficients over

the channels. Such an approach requires methodological changes within two

JADL steps: more in (i) Sparse coding and less in (ii) Dictionary update.

Sparse coding. The LARS algorithm that was used earlier for finding coefficient

aj is modified into two steps as follows.

1. Atom selection. The JADL is applied S times for each channel, in the way

explained in the previous subsection. As result, S different dictionaries

are obtained and the best one DS selected (called compressed dictionary).

In other words, the set of atoms are obtained by the following formula:

( max
dSj ∈DS

)g =

C∑
c=1

‖scdSj ‖, (20)

where C is the number of channels (electrodes), sc represents the signal

of channel c and dSj is the j-th atom of the extended dictionary DS .

2. Standard LARS. Standard LARS sparse coding is implemented, taking a

set of atoms obtained in the first step. Hence, multidimensional coefficients

aijc are found using the compressed dictionary DS for the current trial.

Dictionary update. Since the number of the learned coefficients is increased,

when compared to original JADL, the dictionary update step (ii) should be

modified as well. The more precise implementation of this step may be found

in [22].

The advantages of multidimensional complete model over the single channel

JADL is the fact that all electrodes are used in decision making process, finding

one that best represents the model. Computational results on synthetic, as well

as on real data sets confirm this claim.
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3.5 Source Localization and Leadfield

As we mentioned earlier, the purpose of this internship is to find a relation

between two fundamental problems in signal processing, i.e., Dictionary Learn-

ing and Source Localization. So far, we were addressing the dictionary learning

approaches and now we must introduce the main concepts in source localization.

The aim of source localization is to find the brain areas responsible for EEG

waves of interest. It consists of solving forward and inverse problems, presented

as

M = G · S, (21)

where M ∈ RC×N contains the EEG measurements in a single trial (or average

measurements of all trials), matrix G ∈ RC×U is called lead field or gain matrix;

matrix S ∈ RU×N is called source matrix. Also, C are number of channels,

N time segments and U number of sources. The source matrix represents the

signals created in a number of active sources within a time window. The gain

matrix is a linear operator that maps the source matrix with a number of chan-

nels, onto the EEG measurements. In other words, it consists the influence of

each active source onto each channel.

Figure 4: This figure depicts the Forward and Inverse Problem of M/EEG, from

[22]

Basically, the source localization means, as the name reveals already, finding

the locations of sources that were active during some brain process, within a

time window. As it is an ill-posed problem, in order to get a solution, we must
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first solve the forward problem. It means to find the source representation and

calculate the EEG with a knowledge of the head conductivity and the gain.

Then we can deal with the inverse problem, which is the actual concern, i.e.,

searching for active sources. Let us separately, in short explain the concepts of

the Forward and Inverse problems.

Forward problem. To solve the forward problem we need the head model and

the source model. The first can be represented as (i) a single layer or 3-4 layer

sphere or (ii) realistically, obtained from 3D medical images, such as MRI. After

gaining medical images (the (ii) case), certain numerical methods are imple-

mented in order to get a realistic geometry of the head, a mesh. Those methods

are quite famous in the source localization field, and are called as follows, the

Boundary Element Methods (BEM), Finite Element Methods (FEM) and Finite

Difference Methods (FDM). [10]

As for the sources, in the case of (i), they are often presented as dipoles

that generate electrical currents. This method is quite fast but inaccurate.

Each dipole has 7 variables, 3 for location and orientation (in 3D) and 1 for

magnitude. To make the forward problem easier to solve, one fixes one or two

of these properties of dipoles. The Figures 6 and 7 might clarify this explanation,

and more about dipoles can be found here [25].

Figure 5: A representation of the spherical model, showing an orientation of a

source/dipole orthogonal to the skull

As for the case of (ii) there is an approximation of a realistic source config-
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uration, calculated with methods mentioned above (BEM, FEM, FDM), we get

a distributed source model. Within these methods, the location and orientation

of sources or dipoles are usually fixed.

Figure 6: An example of a representation of the BEM head model and a dipole

source model. An accurate mesh (number of nodes 1995) describing the outer

surface of the brain was created with the SOVITA program, from [15]

With the knowledge of the source models and the head geometry, whether

being the (i) or (ii) case, we can measure the lead field matrix directly. Thus,

with the information about the source space S and the lead field G, we can

easily calculate the EEG measurement; thus finalizing the forward problem.

Although, for all this to work, we need to know the propagation of the current

within the head and the head conductivity, thus some physical properties of the

head. It can be modeled by a Poisson’s differential equation, with Neumann

and Dirichlet boundary conditions, and the knowledge of the quasi-staticity

phenomena. We won’t get further into the physical nature of the problem, but

for a curious reader, more information can be found here [10, 23]. Thus, once we

have the EEG measurements from the Forward problem, we then can address

the inverse model.

Inverse problem. As we already mentioned, this problem is ill-posed, pre-

sented as

S = G−1M
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So, with the known measurements M , the inverse problem refers to finding the

source matrix S. It has infinite number of solutions, therefore we need to apply

some additional constraints and regularization. As in the forward model, there

are two principal groups of models solving the inverse problem, (i) Equivalent

dipole methods and (ii) Linear distributed methods. More about the inverse

problem can be found in [9]

The (i) group is characterized by

• overdetermined system

• searches for parameters of a number of dipoles

• nonlinear optimization techniques

• may converge to local minima

• known methods: non-linear least squares, beamforming, MUSIC, simu-

lated annealing, Genetic algorithms, etc.

The (ii) group is characterized by

• under determined system

• searches for activation in given locations

• linear optimization techniques

• needs additional constraints

• known methods: Bayesian methods, MNE, LORETA, LAURA, etc.

Our model of source localization. The model we are using is the realistic

head model, a mesh with a dense source configuration, found with the BEM

numerical solver. We will discuss more about our case of the Forward Problem

in the section 5.1 Synthetic Data and Leadfield. As for the Inverse problem, we

revealed a possibility of reducing it’s computational complexity by using the co-

efficient matrix within the m-JADL method. Note that with the original JADL

method, such a relation wouldn’t be possible as it is using only one electrode in
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multiple trials, thus loosing the information about the source distribution. We

will also discuss the general relation of the Source Localization with the multi-

channel or multi-dimensional Dictionary Learning approach in 4.2 Dictionary

Learning and Source Localization.

In the next chapter we will present the relation of the Dictionary Learning

methods and Source Localization ones. In order to do so, we must explain the

Statistical techniques used for achieving the relation between these two fields.
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Chapter 3

As said earlier, the main purpose of the work in this chapter is continuation

of the previous work done at Inria research center [13, 22]. In this chapter we

describe our work. It consists first in finding the relationship between the two

different approaches in analysis of the EEG signals obtained in measurements:

Dictionary learning and Source localization. Next we analyse correlation be-

tween any two trials, from different signal sources, but taking into account all

channels. For that purposes we suggest two algorithms.

4.1 Preliminaries

Average signal values over all time slots can be considered as random variables.

Therefore, for completeness, we start this chapter with definitions of the basic

terms from Probability and Statistics that will be used later. The connection

between Probability and Linear algebra is briefly presented. The technique

from Linear algebra, known as Singular value decomposition (SVD) is outlined

as well. It will be used in our study presented in this chapter.

4.1.1 Correlation coefficient.

Let us consider two discrete random variables (r.v. for short) X and Y with the

same size n and the random variable of their product XY :

X =
( x1 x2 . . . xn

p1 p2 . . . pn

)
; Y =

( y1 y2 . . . yn

q1 q2 . . . qn

)
; XY =

( x1y1 . . . xnyn

r1 . . . rn

)
,

where pj , qj and rj are corresponding probabilities. Let further E(X) and

V ar(X) denote mathematical expectation and variance (or dispersion) of r.v.

X respectively:

E(X) =

n∑
i=1

xipi; V ar(X) = E(X − E(X))2 = E(X2)− (E(X))2.

Covariance and correlation between two random variables X and Y are then

defined as

Cov(X,Y ) = E[(X − E(X)) · (Y − E(Y ))] = E(XY )− E(X)E(Y ).
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Cor(X,Y ) =
Cov(X,Y )√

V ar(X) ·
√
V ar(Y )

From above equations it is clear that Cov(X,X) = V ar(X).

Independence between two vectors is very important relation in probability

theory. It requires that the expected value of X · Y is equal to product of each

expected value: E(XY ) = E(X) ·E(Y ). Therefore, if two random variables are

independent, their covariance and variance are equal to zero.

From the definition of covariance above, we also got a key connection between

linear algebra and probability theory:

Property 1. If X,Y are two random variables of zero mean (E(X) = E(Y ) =

0), then

• (i) the covariance Cov(XY ) = E(XY ) is the dot product of X and Y ;

• (ii) The variance V ar(X) = E(X2) is the squared length of X (
∑
i x

2
i ).

Another property, that is also easy to prove, makes this connection even more

clear:

Property 2. Vectors in Rn can be seen as random variables on the probability

space {1, 2, ...., n}.
Thus, random variable X, Y and XY may be presented as

X =
( 1 2 . . . n

x1 x2 . . . xn

)
; Y =

( 1 2 . . . n

y1 y2 . . . yn

)
; XY =

( 1 . . . n

x1y1 . . . xnyn

)
,

i.e., as vectors that belong to Rn.

Correlation between two vectors is in fact their covariance, with the condition

that it should be between -1 and 1.

We now need to switch to statistics to define the correlation between two

vectors X and Y . Assume that values xi and yi are given. Then the correlation

coefficient ρ is

ρ(X,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√

(
∑n
i=1(xi − x̄)) ·

√
(
∑n
i=1(yi − ȳ))

,

where function that estimate expected value is mean x̄ = 1
n

∑n
i=1 xi. Thus, cor-

relation is the cosine of the angle between the two vectors. Positive correlation
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means an acute angle, negative correlation means an obtuse angle. Uncorre-

lated, or independent, means orthogonal.

4.1.2 Singular value decomposition.

Suppose A ∈ Rm×n with rank(A) = r. The singular value decomposition (SVD)

of A is to choose orthogonal basis {v1, . . . , vr} of row space of A, and choose

orthogonal basis {u1, . . . , ur} of column space of A so that

Avi = wiui, w1 ≥ w2 ≥ · · · ≥ wr > 0.

Values wi are called singular values. In matrix form, the equations Avi = wui

become AV = UW , where W is diagonal with singular values on diagonal.

Therefore, since V is orthogonal (V V T = E), after multiplying from the right

the latest matrix equality by V T , the matrix A can be written as

A = UWV T ,

Note that both U ∈ Rm×r and V ∈ Rn×r have orthonormal columns.

Interpretation of A = UWV T .

Let us consider the relation y = Ax. It transforms the unit circle to an

ellipse. By SVD we decompose the ’action’ of A into the following three simple

steps: rotation, scaling and rotation:

• rotate (or reflection) by V T

• scale along the axes

• rotate by U .

Low rank approximation. Sometimes dimensions of A are too large. The

basic idea for the low rank approximation of A is that

• Ā1 = w1u1v
T
1 gives the best rank 1 approximation to A and

• Ār =
∑r
j=1 wjujv

T
j is the best approximation error to A.
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where approximation error is Err = A− Ār. The approximation is best in the

sense that it reaches the minimum of the following objective function:

(min)Err =
∑
i

∑
j

|εij |2.

SVD theorem.

The singular value decomposition of A ∈ Rm×n, rank(A) = r, has orthogo-

nal matrices U and V so that

AV = UW ⇔ A = UWV T = U1W1V
T
1 ,

where A = [U1 U2] W [V1 V2]T =

[
u1 . . . ur︸ ︷︷ ︸ ur+1 . . . um

]
︸ ︷︷ ︸

ColA NulAT



w1 . . . 0 . . . 0

. . .

0 . . . wr . . . 0

0 . . . 0 . . . 0

. . .

0 . . . 0 . . . 0





vT
1

. . .

vT
r

vT
r+1

. . .

vT
n



RowA

NulA

and U1 ∈ Rm×r,W1 ∈ Rr×r, V1 ∈ Rn×r and w1 ≥ w2 ≥ · · · ≥ wr > 0.

Calculation of U,W and U . Calculation is based on finding the eigenvalues

of ATA. Since rank(A) = rank(ATA) = r, ATA has r positive eigenvalues

w2
1, . . . , w

2
r . Therefore, singular values w1, . . . , wr are found. Then, from the

equation

ATAvi = w2
i vi,

we can find orthonormal vectors v1, . . . , vr, and thus, V1 is defined. Matrix U1

can be obtained as ui = Avi
wi
, i = 1, . . . , r, i.e., Avi = wiui.

4.2 Dictionary learning and source localization

As mentioned earlier, our goal is to check if two approaches in analysing M/EEG

signals do have some correlation: dictionary learning and source localization.

Let us recall some notation that we use in our correlation Algorithm.

• G - leadfied matrix with dimensions G ∈ RC×U , where C is the number

of channels and U the number of sources;
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• Ak, k = 1, . . . ,K - coefficients obtained in dictionary learning, Ak ∈
RM×K , where M is the number of repetitions (trials) and K the num-

ber of atoms;

• A = [A1 . . . , AK ]

A natural assumption is that an atom in the dictionary may correspond to

a source in Source localization, i.e., we would like to check if K = U based on

series of experiments. To check if U = K, we develop an algorithm that we call

LeadfieldCorrelation. In fact, we first assume that U = K and then verify

if there is strong correlation between columns of G and Ak. If the correlation

exists, we can conclude that indeed, each active source in the brain corresponds

to an atom.

Since matrices G and Ak do not have the same dimensions, we use singular

value decomposition (SVD) approach. Namely, matrices Ak are decomposed:

Ak = UkWkV
T
k . The jth column of Vk that corresponds to the largest singular

value wj is taken to represent atom k. This is based on the property mentioned

earlier, that the best rank one approximation to Ak is Āk = wjujv
T
j . Thus, the

jth column is placed as kth column of the new matrix Y .

LeadfieldCorrelation pseudocode is presented bellow.

Algorithm 1: Correlation between leadfield matrix G and A

Function LeadfieldCorrelation (K,Z)

1 Read M,K and C (number of trials, atoms and channels resp.)

2 Read leadfield matrix G, G ∈ RC×K .

3 Let k = 1

4 while k ≤ K do

5 Read matrix Ak, Ak ∈ RM×C ;

6 U,W, V, r ←− SVD(Ak,M,C)

7 Let jmax = argmaxj{w1, . . . , wr}
8 Let y(i, k) = v(i, jmax), i = 1, . . . , C

9 Let k = k + 1

10 Z ←− Correlation(C,K,G, Y )

11 return Z.
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In LeadfieldCorrelation pseudo-code, all input data are read within it.

Formal parameters (K,Z) present output, i.e., a correlation matrix of dimen-

sion K ×K. Subroutines that perform SVD and correlation are denoted with

SVD(Ak,M,C) and Correlation(C,K,G, Y ) respectively. Input variables of

those procedures are listed as formal variables, why output variables are on the

left hand side. For example, statement 6: U,W, V, r ←− SVD(Ak,M,C) claims

that input variables for SVD are Ak,M and C, while outputs are U,W, V and

rank r.

In the Computational results section we will demonstrate and analyse results

obtained by this algorithm on synthetic data.

We would also like to mention an important discovery. Let us recall the

Source Localization model we used. We generated a gain matrix by using the

information of the source distribution model obtained from a BEM head model,

as explained in section 3.5. We synthetically created the EEG measurements

(see 5.1) for a subset of the brain, assuming that only that part would be

activated in a chosen time window. Using a number of channels influenced

by a number of active sources, we created a synthetic gain and, solved the

forward problem by calculating the EEG with these synthetic data. Then, by

implementing the m-JADL onto that synthetic EEG, we obtained the Dictionary

and the Coefficient matrix. The coefficient matrix represents the activation and

influence of each atom onto the EEG measurement, as the gain matrix represents

the same for the sources. As we showed that we can assume that atoms =

sources, we can say that the Coefficient matrix might be used for solving the

inverse problem. In other words, when we get such a correlation, we know which

sources were surely active, thus we could inspect their location, as follows. We

need to take into account the full gain matrix, as it happens in the source

localization situation, to discover the location of active sources from the whole

source configuration. As we used only a subset of the gain matrix for creating the

synthetic EEG, we obtained a reduced coefficient matrix, representing only the

active sources. By correlating this coefficient matrix with the full gain matrix,

we might discover that the correlation reveals those columns/sources of the full

gain which are the most influential in the EEG. This means that we will find

active sources by correlating each column of the coefficient matrix with the full
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leadfield, thus solving the inverse problem. The same could be applied for real

data, meaning we already have the EEG and Gain as input, we first execute the

m-JADL and then correlate the coefficients with the used leadfield and find the

locations of active sources. Note that this is only in theory, as many details and

practical issues were omitted. Although, some experiments were done to prove

this hypothesis and has shown some promising results. Unfortunately for now

we wont present them in this paper, due to the lack of time.

4.3 Correlation among trials

Another challenging question is if there is a correlation among different trials in

measuring EEG signals from different channels? The simplest way to do that is

without using SVD, i.e., we find correlation between any two row vectors of Ak,

k = 1, . . . ,K. The final correlation matrix Z has dimension M ×M . Algorithm

has the following steps.

Algorithm 2: Correlation between trials in A

Function TrialCorrelation (M,Z)

1 Read M,K and C (number of trials, atoms and channels resp.)

2 Let k = 1

3 while k ≤ K do

4 Read matrix Ak, Ak ∈ RM×C ;

5 Zk ←− Correlation(M,C,Ak, Ak)

6 Let k = k + 1

7 return Zk.

Again, results with TrialCorrelation (M,Z) will be demonstrated in Com-

putational results section.
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Chapter 4

This chapter contains computational results obtained by algorithms from the

previous chapter. We first give brief description how synthetic (random) data-

sets are generated. They are in fact taken from [22]. Then we analyse the

correlation questions on synthetic (with and without noise) data sets.

5.1 Input data

In this sections we explain how the input data for testing different Dictionary

learning techniques are obtained.

Synthetic Data. Synthetic data used in our work are those already generated

in [22]. For the sake of completeness, the way how they are obtained will be

briefly explained.

The generation of the synthetic data are based on the following observations.

N input signals in N seconds may be obtained by generating just N amplitudes

of N peaks of the signal. Then a learned atom could be presented as one

of the peaks; the latencies would be calculated as the difference of the time

point where the peak occurred and the time point of the learned atom and

the coefficients would be the differences among the amplitude of the peaks and

amplitude of learned atom. However, the real problem is much more complex

than this simplified example: the wave-shapes we are searching for (the peaks in

the previous example) are spread in different signals over the trials and channels;

this more than one wave-shape may exist in the signal.

To check the quality of the dictionary learning method, we also need to

generate some initial data.

(i) Choose parameters N,K,M and C that denote number of time intervals

(seconds), atoms, trials and channels respectively;

(i) Generate a dictionary D ∈ RN×K of K atoms. For that purposes usually

are used normalized vectors (atoms) of various types, as spike, Gaussian

peak or oscillatory;

(ii) Generate a set of coefficients at random for the multidimensional data set

āijc ∈ RK×M×C , i = 1, ..,K; j = 1, ..,M ; c = 1, .., C;
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(iii) Generate a set of jitters or random latencies δ̄ijc ∈ ZK×M×C , i = 1, ..,K; j =

1, ..,M ; c = 1, .., C;

(iv) Generate synthetic sources using the following formula

S(j)
c =

K∑
i=1

āijc δ̄ijc d
(j)
i ,∀j = 1, ..,M, ∀c = 1, .., C (22)

Figure 7: An example of a synthetic normalized dictionary and some generated
signals. A dictionary with three atoms (left). The dictionary in this figure is
plotted row wise for visualization reason. The first nine generated signals from
the first channel (right), from [22]

In plain words, we activated the sources by multiplying them with the pre-

viously generated atoms.

Leadfield and synthetic data. The connection between a dictionary learning

model and the forward and inverse models

M = G · S

is discussed in & 4.2. We also need to be able to get the location of sources

from the synthetic data set. For those purposes the lead field matrix G may

be seen as a linear combination of synthetically generated atoms. However, the

data used for getting G and S for solving the forward problem are taken from

real data, based on real EEG measurements, as in [12].
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Figure 8: An example of the generated EEG measurements. The measurements
corresponding to different channels for a single trial appear ”synchronously”
(left). Notice that the negative peaks occur at the same time point (around
sample 400). The measurements that corresponds to different trials for a single
channel have different jitters, from [22]

Two different ways of using those real data, together with the synthetic data

already generated are explored [22]:

• A simple leadfield data set: the number of sources U is given; each group

contains a single source from the source configuration; each group receives

a different pattern of activity;

• A complex leadfield data set: the number of sources U together with the

number of their closest neighbors V (with respect to the source configu-

ration) are given; each group receives the different pattern of activities;

each of the selected sources within a group receives ‘jittered’ version of

the group activity.

It is easy to see that the simple leadfield data set is a special case of the

complex one. Thus, in [22], the synthetic multi-dimensional EEG measurement

that corresponds to a single trial that takes into account source localization

problem, may be presented as

M = GS̄āTDT , (23)

where elements of S̄ and āT belong to the set {0, 1}. The purpose of vector

S̄ ∈ RU is to select the desired source columns of the gain matrix G. On
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the other hand, the 0-1 vector ā selects corresponding rows of the extended

dictionary. Dictionary matrix D is an extended dictionary (previously denoted

as DS , see (20)). Therefore, solving the equation (23) (forward problem) for

each trial, gives the multi-dimensional measurement matrix M ∈ RN×M×C . In

the figures bellow, we can see an example of 3 sources being activated.

Figure 9: Left: an example of 3 selected source groups to be active, with the
frontal and side view. Created with Vtk and visualized with Paraview. Right,
from [22]: atoms used to activate these sources.

Adding noise into the synthetic data. As it was mentioned several times

earlier, M/EEG data measured by electrodes are very noisy. That fact should

be taken into account during the generation of realistic synthetic data. Noise is

usually generated using random variable with Gauss (or normal) distribution.

Noise is obtained by using a white additive Gaussian distribution. It can be

introduced in two ways:

(i) Noise at the channel level. Its source are electronic devices. Noise can be

generated for all the channels or to just some of selected ones.

(ii) Noise at the source level. Its source is psychological. It can appear by

persons who are tested after some period of time. Thus, the random noise

can be added when atoms are generated in solving the forward problem

(23).
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5.2 Computational results

Algorithms from chapter 3 are coded in Fujicu Fortran 95 and run on personal

computer with 250 MhZ.

5.2.1 Algorithm 1.

We start with correlation between the leadfield matrix and dictionary learning

coefficients, as explained in Algorithm 1.

Example 1. Let us first consider an example with synthetic data set without

noise that has the following parameter values: N = 3000,M = 300,K = U =

3 and C = 6. First, the dimension of time (t = 1, . . . , N) is removed from

consideration by finding the average values over t, for each trial j = 1, . . . , 300,

and for each channel c = 1, . . . , 6. At the input of Algorithm 1 from chapter

3.2, we in fact have matrices Ak ∈ R300×6, for k = 1, 2, 3. From obvious reasons

we do not present here Ak matrices. However, the generated (synthetic) 6×3

leadfield matrix used is

G =



26.10494941 −2.91802128 −15.17124887

−12.42936481 −9.95802063 11.22054694

4.7740596 27.7527064 −10.96806411

−11.62695673 −22.10600332 −6.03912566

−10.21628105 −24.94081715 −15.1523816

−10.03478176 −20.35329612 −17.30765927


The following values are obtained from Algorithm 1. First of all, for all k, the

rank(Ak) = 3. The diagonal 6 × 6 matrix W (1), that correspond to the first

atom (channel) looks as follows.

W (1) =



482.1786 0 0 0 0 0

0 5.4515 0 0 0 0

0 0 0.5249 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


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Therefore, there are 3 singular values and diagonal matrix W
(1)
1 becomes

W
(1)
1 =


482.1786 0 0

0 5.4515 0

0 0 0.5249


The largest singular value 482.1786 is in the first column (jmax = 1). According

to Algorithm 1 (and based on SVD properties explained earlier in chapter 3),

we got

y(1, j) = 482.1786 · vT1 = (2.7833, 9.8729,−27.3949, 21.7361, 24.4749, 19.9446)T .

The ranks of A2 and A3 matrices are also 3, and we get

W
(2)
1 =


350.0590 0 0

0 0.4295 0

0 0 0.1625


and

W
(3)
1 =


327.7443 0 0

0 3.7919 0

0 0 0.1712

 .
In the same way as we got the first column of mtrix Y , we get its second and

third columns. The final matrix Y that should be correlated with the given

leadfield matrix G is then

Y =



2.7833 26.3891 −15.3998

9.8729 −12.5658 11.4067

−27.3949 4.8289 −11.1745

21.7361 −11.7553 −6.1135

24.4749 −10.3293 −15.3682

19.9446 −10.1453 −17.5633


.

We now need to find correlation between any two columns of G and Y . The

final correlation matrix Corr has obviously dimensions 3 × 3.

Corr(G, Y ) =


−0.5179 1.0000 −0.3801

−1.0000 0.5167 0.0212

−0.0199 −0.3794 1.0000

 .
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It appears that for each column of ledfield matrix G there exists column of Y

such that these two columns correlate (the corresponding correlation coefficients

are equal to 1 or -1). In this example, it is confirmed hypothesis that the number

of sources correspond to the number of atoms, U = K. Figure 11 presents the

correlation of columns of G and Y .

Example 2. We will use the same set of synthetic data and the same gain

matrix G as in Example 1, but this time we will add the noise at the channel

level. The following result is obtained by Algorithm 1. All three matrices A1, A2

and A3 have the full rank 6. To save the space, we do not present all details

(hey can be seen at the web page of the candidate). We just present the final

matrices Y and Corr(G, Y ):

Y =



2.7990 26.3004 −15.4082

9.8404 −12.5671 11.4725

−27.3895 4.7738 −11.1806

21.6683 −11.7749 −6.0263

24.4973 −10.3090 −15.3844

19.9437 −10.2123 −17.6349


.

We can conclude that noise did not influence much columns in Y . Indeed,

coefficients yij in this example with noise slightly differ from those obtained in

the previous noiseless example.

Corr(G, Y ) =


−0.5173 1.0000 −0.3799

−1.0000 0.5165 0.0207

−0.0209 −0.3789 1.0000

 .
The same conclusion may be drawn after comparing correlation matrices in last

two examples. Indeed, the values of 1 and -1 remain at the same position.

5.2.2 Algorithm 2.

Here we present results obtained with Algorithm 2 from previous section. It

directly correlates all rows of each matrix Ak.

Example 3. We use again the same instance from Example 1. Since we directly

correlate rows of Ak, we do not need leadfield matrix G. The final correlation
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matrix Corr(Ak, Ak), for all k = 1, 2, 3 has dimension 300 × 300. It appeared

that most values were 1 or -1. This is specially the case for the first source

(atom), i.e., for k = 1. Correlation matrices for two extreme cases are presented

in figures 10 and 12. As a plotting tool, we used gnuplot.

Figure 10: Direct correlation of 300 trials on example with C = 6 channels,
noiseless data and k = 1.

In Figure 10 the correlation coefficients among 300 vectors is presented where

we got the strongest correlation. It is mostly 1 or -1. Indeed, in less than 1 %

cases coefficients were different than 1 or -1.

Figure 11: Direct correlation of 300 trials on example with C = 6 channels,
noisy data and k = 3.
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The weakest correlation is obtained in the noisy data case and with the third

source (atom). It appears that the negative correlation almost never occurred.
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Chapter 5

In this final chapter we outline possible contribution of this Intership, some

conclusions, and then some possible suggestions for the future work.

6.1 Contributions

The following contributions may be attributed to this Intership:

• An original review on the Dictionary learning topic is given. It is based

on reading and analysing large literature from different fields, since the

topic is already multi-disciplinary.

• New interpretation of some steps of dictionary learning and JADL algo-

rithms is provided. It could lead to improvement of the existing methods.

For example, the new discrete optimization formulation of sparse coding

step of JADL is proposed. In the original method that problem is solved

by local search heuristic. However, better heuristic, based on some meta-

heuristic paradigms (e.g. Genetic algorithm) can be applied.

• It is clearly shown the connection between Dictionary learning methods

and Alternate heuristics, commonly used technique in Optimization and

Operations research. The connection between the two research fields is

always welcome, bringing benefits to both.

• This work also contains new algorithms to compare and correlate results

obtained by different mathematical models for EEG measurements. For

that purposes, some classical numerical analysis and probability theory

methods are used and coded: Singular value decomposition method and

Correlation.

• After the information gained from the Correlation and SVD, the connec-

tion between Dictionary Learning and the Source Localization problems is

quite evident. It is suggested how the complexity of the source localization

problem could be reduced by introducing the solution of the Dictionary

Learning as a constraint.
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6.2 Conclusions

The first chapter aims to introduce the reader into the topic. The second chapter

provides an original view to the topic, trying to find the connection between the

dictionary learning approach and the well known heuristics from Optimization

and Numerical analysis areas. Namely, Alternate heuristic is implemented in

a large number of numerical problems such as clustering (k-means algorithm),

location (Cooper’s method), Zaidel method for solving simultaneous system,

etc. At the same time, it is shown that Alternate heuristic is a basis for JADL

method as well. In third chapter we propose a new way of comparing two

different approaches from the field, Dictionary Learning and Source Localizaion.

It appears that the hypothesis claiming that each atom corresponds to one

source is confirmed for the synthetic data with and without noise. It also appears

that trials are strongly correlated among each other. Therefore, there is no need

to perform many of them and increase unnecessary the size of the problem.

Future work may include the following ideas:

• Develop a new heuristic for finding both dictionary and coefficients that

will relay on some metaheuristic (as Evolutionary algorithms, Iterated

Local search etc). Classical alternate heuristic may be used as a part of

the final method, i.e., as a local search (as Memetic algorithm that uses

local search heuristic as mutation operator).

• Improve JADL by solving both steps with new global optimization solution

techniques.

• There are a lot of space to analyse huge amount of EEG data obtained.

Some clustering, data mining or Big data techniques could obviously be

applied as well.

• Reducing the complexity of the Source Localization problem with the

coefficient matrix of Dictionary Learning
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