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Brain Computer Interface
ADAPTIVE
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Unifying, Generic Framework
(Conceptual)
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Unifying, Generic Framework
(Computational)

/ ACTIVE INFERENCE \
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Mladenovic et al. 2018 Active
Inference for Adaptive BCI:
Application to the P300 Speller



Unifying, Generic Framework
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Unifying, Generic Framework
(for P300)

\"
S De

© 1. Intentions: p v
Spell or Pause PR D .

2. Reactionsto if; | User model

— y T ] .

A

B [+ o E

sk model |

1 2

AT L Bt
Al e g

'Observations:
P300, ErrP

Actions:
Flash, spell or switch-off




Unifying, Generic Framework
(Computational, P300)
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Active Inference
(Ophmal stopping & flashing)
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Active Inference:
The Origins

Karl Friston

Nature’s tendency to disorder —
Increase of entropy.



Active Inference:
The Origins

Nature’s tendency to disorder —
Increase of entropy.

Living beings resist dispersion —
minimize entropy,
and limit themselves into a
finite number of states!



Active Inference:
The Origins

Markov model
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Passing from one state to another is
possible through performing an action.
The choice of future state depends on
min of the relative entropy — relative to a

desired state!



Active Inference:
The Origins
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Active Inference:
The Origins
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Active Inference:
The Origins

Bayesian brain!
Internal model of the environment.
A Bayesian inference (updating certainty
of the environment with new
observations)
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(reminder)

YRPEA °
b o N%D\"’ P(®) ,\/
15 1k by
'Fﬂ’"‘ o \IOUSm;kﬂ.

Fire?



Bayes Theorem
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Active Inference:
The Origins

Bayesian brain!

Internal model of the environment.
A Bayesian inference (updating certainty
of the environment with new

observations)
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Active Inference:
The Origins

One cannot know its frue states or the true states of the world
pbut only infer it through sensory observations



Active Inference:
The Origins

Mapping between states and observations is diffeomorphic.
Entropy over hidden states is bound by enfropy over observations.



Active Inference:
The Origins

To reach the desired stafte, one can update their model of the
world or perform action and influence the world.



Active Inference:
The Origins

Predict Posterior is difficult
without knowing the Prior.
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Active Inference:
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Active Inference:

The Origins
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4
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Courtesy of Oleg Solopchuk
(tutorial of Active Inference)



Active Inference:
The Origins

Maximize model evidence
logP(0)
= minimize surprise
—logP(0)
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Courtesy of Oleg Solopchuk
(tutorial of Active Inference)



Active Inference:
The Origins

Model evidence =
marginal likelihood
“Sum out” s from P(o, s)

— log p(0) —logZp 0, 5)

p(0)
model
Courtesy of Oleg Solopchuk parameters

(tutorial of Active Inference)



Active Inference:
The Origins

Model evidence =
marginal likelihood
“Sum out” s from P(o, s)

Variational
(approximate)
Bayes

—log Y plo,s)= —long Ao, 5)

Courtesy of Oleg Solopchuk
(tutorial of Active Inference)



Active Inference:

The Origins
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Courtesy of Oleg Solopchuk
(tutorial of Active Inference)



Active Inference:
The Origins

—log » p(o,s)=—log > q(ﬁ)pé?;f)

of _
= ofa
—log Z (](-S)p(f_"g s) < B Z I 5 p(o, s)
- q(s) - A q(s)
model
parameters

Courtesy of Oleg Solopchuk
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Active Inference:
Variational Free Energy
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Active Inference:
Variational Free Energy
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Courtesy of Oleg Solopchuk
(tutorial of Active Inference)
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Active Inference:
Free Energy

o5l
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0,5

Epistemic value tells us how much we could learn from the
environment if we followed this policy.



Active Inference:
Free Energy
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Active Inference:

Free Energy F
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Unifying, Generic Framework
(Computational, P300)

1 |/htem\’ions’f active inference
Spell or Pause } pr————
2. Reactions to
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Active Inference:
Parallel brain and machine

The brain as an adaptive system, The machine incorporates the
described by Active Inference: same behavior :

accumulates sensory input
to update its internal model of the
environment,
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to update its internal model of the model of the user,;
environment,



Active Inference:
Parallel brain and machine

The brain as an adaptive system, The machine incorporates the
described by Active Inference: same behavior :

accumulates sensory input —— > EEG data, to update its internal
to update its internal model of the model of the user,;
environment,

optimizes its interactions ———» with the updated user model,
through making inference about make inference about the user
the environment, intentions,



Active Inference:
Parallel brain and machine

The brain as an adaptive system, The machine incorporates the
described by Active Inference: same behavior :

accumulates sensory input —— > EEG data, to update its internal
to update its internal model of the model of the user,;
environment,

optimizes its interactions ———» with the updated user model,
through making inference about make predictions about the user

the environment, state,
and and
through acting upon the —» reinforce predictions or reduce
environment; prediction error with optimal

action (feedback or stimuli).

Dialogue between the two,
co—adaptation



Active Inference:
Application on P300 Speller

Generic (Bayes) Model
States, Observations, Action

,

User intentions
(spell, pause)
and reactions to
Snwum

- K
- KRN
36 items and
37" “look—away” for pause
X 4 reaction types:
“My letter is flashed/spelled”
or not.



Active Inference:
Application on P300 Speller

Generic (Bayes) Model
States, Observations, Action

.

User intentions
(spell, pause)
and reactions to

stimuli Flash  Spell ... switch—off

QObservations

P300 or not? ErrP or not?

Confidence

Nottarget yUndefined  Target Feedback Undefined Feedback
Incorrect Correct



Active Inference:
Application on P300 Speller

Generic (Bayes) Model
States, Observations, Action

. Note:

User intentions For each subject, the
(spell, pause) robability to get an
and reactions to P ity 109
stimul observation (likelihood)
. IS learned from training

AP e G O

Mmﬂ

A/L\Observotions

P300 or not? ErrP or not?

\ Confdence /

fFQ\JT] FL%-XX FLTO [FLT1 FBN lFD FBXX FBCO

=l —

Not target  Undefined Target Feedback Undefined Feedback
Incorrect Correct



Active Inference:
Application on P300 Speller

Generic (Bayes) Model

States, Observations, Action

Priors (precision, utility)

Possible actions

(flash, spell, O‘FF)‘\LU’ U ’“T

Hidden states

n =(37 x 4)

I /,S’fa‘re transition (nxn)

(olepewols on action)

‘\s“q qs

T+1

log likelihood ratio:
LLRt - log [P(WT)/p(wNT)]

@A/(S’ra’fe mapping onto outcome

likelihood

(reflects classifier accuracy)



Active Inference:
Application on P300 Speller

Generic (Bayes) Model
States, Observations, Action

Passing from one state to
another (through action) using
relative entropy and by
choosing such action that
provides most information
(min surprise)
= Reveal the feature of
interest: the target letter!!!



Active Inference:
Application on P300 Speller

OLC/QE\DV\
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QSW‘@&
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5078-( 417,94
i 4 i C
DESIRED = We
FLNT1 |FLNTO FLTO |FLT1 | FBN | FBIO FEE0 assign high
probability

Not target yUndefined  Target Feedback Undefined Feedback
Incorrect Correct



Active Inference:
Application on P300 Speller

(1) oo =C

Softmax of final

outcomes:

2) INC = utility

FC1 FCo FXX Flo Flt Tt To TXX NTo NTi

Favor
correct
feedback

Favor equally
targets or not

Penalize
incorrect
feedback



Active Inference:
Application on P300 Speller

All Is In one equation, making
any available action possible
(switch between any action
automatically and by rate of
precision and speed defined).



Active Inference:
Experimental Design

Observations — already classified data
(target/not) with Riemann distances
transformed into log likelihoods, from
18 real subjects.



Active Inference:
Simulation

Observations — already classified data
(target/not) with Riemann distances
transformed into log likelihoods, from
18 real subjects.

After each flash, we pick randomly
from the pool of data (target/not),
map it to our observations and get 1
out of 5 possible observations.

FLNTT |FLNTO FLTO |FLTT

Not target yUndefined  Target

So, even though it was a target in
the beginning, it could be a non—
target after the mapping — that
depends on the likelihood



Active Inference:

Demo:

FeedBack classifier (ErrP) is
simulated (specificity: 0.95,
sensitivity: 0.75, p(FBXX)= 0)

v

FBIT | FBIO FBCO | FBCI

N

Feedback Undefined Feedback
Incorrect Correct




Active Inference:
Results
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100-

Bit rate

50-

Bit Rate:
B <—log(N) + P * log(P)
- = (1=P) * log((1-P)/(N-1))

¢ T <= 0.2 * nFlash
~ BR <- B * (60/T)

Active Inference:
Results

12000 letters, 18 subjects

bonus

amn

Optimal stop  Active inference EActive inference Active inference

Fixed flash
; idle state with ErrP
Method : Look away Perfect
. classifier



Active Inference:
Take Away

CHECK OUT tutorial from Oleg:

https://medium.com/@solopchuk/tutorial-on—active—
inference—30edcf50f5dc



Active Inference:
Back to the Future

Tux Flow
with Active Inference!!




Active Inference:
Changing C values

S03  Perfect subject
140-

3 p##*#ﬁ**-,ﬁ#ﬁ¥

D

'b;q/ bcbl b-.b b:b ,‘6 (nq’ (ﬂb‘ ﬁ(b ﬁ% .’(b fnq/ Cnb‘ fnb (n‘b -\.1,\

S08  Good subject

m§+—**+*+lﬁﬁ-f**i

RUBRC IR YL P K K T JO S . S

804 Poor subject

*”-+********+!h+*
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Active Inference:
Experimental Design

After each flash, we pick randomly
from the pool of data (target/not),
map it to our observations and get 1

out of 5 possible observations.
Go-lf 1 :

(l|03)’ < (T (Bl = |

10 TO

!

Training dafa

107 —— FLNT1 |[FLNTO FLTO |FLT1
(D), 4o mm |
i 3

Nottarget yUndefined Target

So, even though it was a target in
the beginning, it could be a non—
target after the mapping — that
depends on the likelihood
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